अध्याय 11 रचनाएँ 11ण्1 भूमिका पिछले अध्यायों में आकृतियाँ, जो किसी प्रमेय को सि( करने या प्रश्नों को हल करने में आवश्यक थीं, वे यथाथर् नहीं थीं। वे केवल आपको स्िथति का अनुभव करने तथा सही तवर्फदेने की सहायता के लिए खींची गईं थीं। तथापि, कभी - कभी शु( आकृति की आवश्यकता होती है। उदाहरण के लिए, किसी बनने वाले भवन का मानचित्रा बनाना, औजारों और मशीनोंके विभ्िान्न भागों का खाका बनाना, सड़क का मानचित्रा बनाना आदि। इन आकृतियों को बनाने के लिए वुफछ आधरभूत ज्यामितीय उपकरणों की आवश्यकता होती है। आपके पास ज्योमेट्री बाक्स अवश्य होगा, जिसमें निम्न उपकरण होते हैं: ;पद्ध अंशाकित पटरी ;तनसमतद्ध, जिसके एक ओर सेंटीमीटर तथा मिलीमीटर चिन्िहत होते हैं तथा दूसरी ओर इंच और उसके भाग चिन्िहत होते हैं। ;पपद्ध सेट - स्क्वायर का एक युग्म जिसमें एक के कोण 90ह्, 60ह्, तथा 30ह् तथा दूसरे के कोण 90ह्, 45ह् तथा 45ह् होते हैं। ;पपपद्ध डिवाइडर, जिसकी दोनों भुजाओं में दो नुकीले सिरे होते हैं। इन भुजाओं को समायोजित किया जा सकता है। ;पअद्ध परकार, जिसमें पेंसिल लगाने का विधन होता है। ;अद्ध चाँदा सामान्यतः एक ज्यामितीय आकृति, जैसे कि त्रिाभुज, वृत्त, चतुभर्ुज, बहुभुज आदि जिनमें मापें दी हों को बनाने में इन सभी उपकरणों की आवश्यकता होती है, परन्तु ज्यामितीय रचनाज्यामितीय आकृति बनाने की वह प्रिया है जिसमें केवल दो उपकरण - एक अंशांकनहीन पटरी ;नदहतंकनंजमकद्ध और एक परकार का प्रयोग होता है। उन रचनाओं में जिनमें माप भी दिए हों, आप अंशाकित पटरी और चाँदे का भी प्रयोग कर सकते हैं। इस अध्याय में, वुफछ आधरभूत रचनाएँ बताइर् जाएँगी। इनका प्रयोग करके वुफछ विशेष त्रिाभुजों की रचना की जाएगी। 11ण्2 आधरभूत रचनाएँ कक्षा टप् में, आपने अध्ययन किया है कि किस प्रकार एक वृत्त, एक रेखाखंड का लंब समद्विभाजक, 30ह्, 45ह्, 60ह्, 90ह् और 120ह् के कोणों तथा एक दिए गए कोण के समद्विभाजक की रचना की जाती है। परन्तु इन रचनाओं के लिए उचित कारण नहीं बताए गए थे। इस अनुच्छेद में, आप इनमें से वुफछ की रचनाएँ, कारण बताते हुए कि क्यों ये रचनाएँ प्रामाण्िाक हैं, करेंगे। रचना 11ण्1 रू एक दिए हुए कोण के समद्विभाजक की रचना करना। एक कोण ।ठब् दिया है। हम इसके समद्विभाजक की रचना करना चाहते हैं। रचना के चरण रू 1ण् ठ को केन्द्र मानकर तथा कोइर् त्रिाज्या लेकर एक चाप लगाइए जो किरण ठ। और ठब् को क्रमशः, मान लीजिए, म् और क् पर प्रतिच्छेद करता है ख्देख्िाए आकृति 11ण्1;पद्ध,। 1 2ण् पुनः क् और म् को केन्द्र मानकर तथा क्म् से बड़ी त्रिाज्या लेकर चाप लगाइए, जो2;मान लीजिएद्ध एक दूसरे को थ् पर प्रतिच्छेद करते हैं। 3ण् किरण ठथ् खींचिए ख्देख्िाए आकृति 11ण्1;पपद्ध,। यही किरण ठथ्ए कोण ।ठब् का अभीष्ट समद्विभाजक है। आइए हम देखें कि इस विध्ि से कोण समद्विभाजक किस प्रकार प्राप्त हुआ है। क्थ् और म्थ् को मिलाइए। अब त्रिाभुजों ठम्थ् तथा ठक्थ् में, ठम् त्रठक् ; एक ही चाप की त्रिाज्याएँ द्ध म्थ् त्रक्थ् ;समान त्रिाज्या वाले चापद्ध ठथ् त्रठथ् ;उभयनिष्ठद्ध अतः, Δठम्थ् ≅Δठक्थ् ;ैैै नियमद्ध इससे प्राप्त होता है: ∠म्ठथ् त्र ∠ क्ठथ् ;ब्च्ब्ज्द्ध रचना 11ण्2 रू एक दिए गए रेखाखंड के लम्ब समद्विभाजक ;लम्बाध्र्कद्ध की रचना करना । एक रेखाखंड।ठ दिया है। हम इसके लम्ब समद्विभाजक की रचना करना चाहते हैं। रचना के चरण रू 1 1ण् ।और ठ को केन्द्र मानकर तथा ।ठ से अिाक2त्रिाज्या लेकर रेखाखंड ।ठ के दोनों ओर ;एक दूसरे को प्रतिच्छेद करते हुएद्ध। चाप लगाइए 2ण् मान लीजिए कि ये चाप एक दूसरे को च् और फ पर प्रतिच्छेद करते हैं। च्फ को मिलाइए ;देख्िाए आकृति 11ण्2द्ध। 3ण् मान लीजिए च्फए ।ठ को बिन्दु ड पर प्रतिच्छेद करती है। तब रेखा च्डफए ।ठ का अभीष्ट लम्ब समद्विभाजक है। आइए हम देखें कि यह विध्ि किस प्रकार ।ठ का लम्ब समद्विभाजक देती है। । और ठ को च् और फ से मिलाइए जिससे ।च्ए ।फए ठच् तथा ठफ प्राप्त होते हैं। त्रिाभुजों च्।फ तथाच्ठफ में, ।च् त्रठच् ;समान त्रिाज्या वाले चापद्ध ।फ त्रठफ ;समान त्रिाज्या वाले चापद्ध च्फ त्रच्फ ;उभयनिष्ठद्ध अतः, Δच्।फ ≅Δ च्ठफ ;ैैै नियमद्ध इसलिए, ∠।च्ड त्र ∠ठच्ड ;ब्च्ब्ज्द्ध अब त्रिाभुजों च्ड। तथाच्डठ मेंए ।च् त्रठच् ;पहले की तरहद्ध च्ड त्रच्ड ;उभयनिष्ठद्ध ∠।च्ड त्र ∠ठच्ड ;ऊपर सि( किया जा चुका हैद्ध अतः, Δच्ड। ≅Δच्डठ ;ै।ै नियमद्ध इसलिए, ।ड त्र ठड और ∠च्ड। त्र ∠च्डठ ;ब्च्ब्ज् नियमद्ध क्योंकि ∠च्ड। ़ ∠च्डठ त्र 180° ;रैख्िाक युग्म अभ्िागृहीतद्ध हम पाते हैंः ∠च्ड। त्र ∠च्डठ त्र 90° अतः च्डए अथार्त् च्डफए रेखाखंड ।ठ का लम्ब समद्विभाजक है। रचना 11ण्3 रू एक दी गइर् किरण के प्रारंभ्िाक बिन्दु पर 60ह् के कोण की रचना करना। आइए हम प्रारंभ्िाक बिन्दु । वाली किरण ।ठ लेंख्देख्िाए आकृति 11ण्3;पद्ध ,। हम एक किरण ।ब् की रचना करना चाहते हैं, जिससे कि ∠ब्।ठ त्र 60° हो। इसवफो करने की एक विध्ि नीचे दी है। रचना के चरण रू 1ण् । को केन्द्र मानकर और कोइर् त्रिाज्या लेकर एक वृत्त का चाप खींचिए, जो।ठ को मान लीजिए एक बिन्दु क् पर प्रतिच्छेद करता है। 2ण् क् को केन्द्र मानकर और उसी त्रिाज्या, जो पहले ली गइर् थी, से एक चाप खींचिए, जो चरण 1 में खींचें गए चाप को बिन्दु म् पर प्रतिच्छेद करता है। 3ण् म् से जाने वाली किरण ।ब् खींचिए ¹देख्िाए आकृति 11ण्3 ;पपद्धह्। आकृति 11ण्3 तब ∠ब्।ठ ही 60° का अभीष्ट कोण है। अब आइए देखें कि यह विध्ि वैफसे 60° का कोण देती है। क्म् को मिलाइए। तब, ।म् त्र ।क् त्र क्म् ;रचना सेद्ध अतः, Δ म्।क् एक समबाहु त्रिाभुज है और ∠ म्।क्ए जो कि ∠ ब्।ठ के बराबर है, 60° का है। प्रश्नावली 11ण्1 1ण् एक दी हुइर् किरण के प्रारंभ्िाक बिन्दु पर900 के कोण की रचना कीजिए और कारण सहित रचना की पुष्िट कीजिए। 2ण् एक दी हुइर् किरण के प्रारंभ्िाक बिन्दु पर 450 के कोण की रचना कीजिए और कारण सहित रचना की पुष्िट कीजिए। 3ण् निम्न मापों के कोणों की रचना कीजिए: 1° ;पद्ध 30° ;पपद्ध 22 ;पपपद्ध 15° 2 4ण् निम्न कोणों की रचना कीजिए और चाँदे द्वारा मापकर पुष्िट कीजिए: ;पद्ध 75° ;पपद्ध 105° ;पपपद्ध 135° 5ण् एक समबाहु त्रिाभुज की रचना कीजिए, जब इसकी भुजा दी हो तथा कारण सहित रचना कीजिए। 11ण्3 त्रिाभुजों की वुफछ रचनाएँ अभी तक वुफछ आधरभूत रचनाओं पर विचार किया गया है। पिछली कक्षाओं में की गइर् रचनाओं और उपयर्ुक्त वण्िार्त रचनाओं का प्रयोग कर, अब वुफछ त्रिाभुजों की रचनाएँ की जाएँगी। अध्याय 7 से स्मरण कीजिए कि ै।ैए ैैैए ।ै। तथा त्भ्ै दो त्रिाभुजों की सवा±गसमता के नियम हैं। अतः एक त्रिाभुज अद्वितीय होता है, यदि ;पद्ध दो भुजाएँ और बीच का कोण दिए हों, ;पपद्ध तीनों भुजाएँ दी हों, ;पपपद्ध दो कोण और बीच की भुजा दी हो तथा ;पअद्ध समकोण त्रिाभुज में कणर् और एक भुजा दी हो। आपने कक्षाटप्प् में इन त्रिाभुजों की रचना करना सीखा है। आइए, अब हम त्रिाभुजों की वुफछ और रचनाओं पर विचार करें। आपने ध्यान दिया होगा कि किसी त्रिाभुज की रचना के लिए, कम से कम उसके तीन भाग दिए होने चाहिए। परन्तु तीन भागों के सभी संचय ;बवउइपदंजपवदेद्ध इसके लिए पयार्प्त नहीं हैं। उदाहरण के लिए, यदि दो भुजाएँ तथा एक कोण ;बीच का कोण नहींद्ध दिए हों। तो अद्वितीय रूप से त्रिाभुज की रचना सदैव संभव नहीं है। रचना 11ण्4 रू दिए हुए आधर, एक आधर कोण तथा अन्य दो भुजाओं के योग से त्रिाभुज की रचना करना। एक त्रिाभुज।ठब् में आधरठब्ए एक आधर कोण माना ∠ठ तथा अन्य दो भुजाओं का योग ।ठ ़ ।ब् दिया है। आपको त्रिाभुज ।ठब् की रचना करनी है। रचना के चरण रू 1ण् आधर ठब् खींचिए और बिन्दुठ पर दिए गए कोण के बराबर ∠ग्ठब् बनाइए। 2ण् किरण ठग् से ।ठ ़ ।ब् के बराबर रेखाखंड ठक् काटिए। 3ण् क्ब् को मिलाइए तथा ∠ठक्ब् के बराबर कोण क्ब्ल् बनाइए। 4ण् मान लीजिए ब्ल्ए ठग् को । पर प्रतिच्छेदित करती आकृति 11ण्4 है ;देख्िाए आकृति 11ण्4द्ध। तब, ।ठब् अभीष्ट त्रिाभुज है। आइए देखें कि आपने अभीष्ट त्रिाभुज कैसे प्राप्त किया। दिए गए मापन अनुसार, आधर ठब् तथा ∠ठ बनाए गए हैं। पुनः त्रिाभुज ।ब्क् में, ∠।ब्क् त्र ∠ ।क्ब् ;रचना सेद्ध अतः ।ब् त्र ।क् होगाए और पिफर ।ठ त्र ठक् दृ ।क्त्रठक्दृ ।ब् अथार्त् ।ठ ़।ब् त्र ठक् वैकल्िपक विध्ि रू उपयर्ुक्त दो चरणों की पुनरावृिा कीजिए। पुनः ब्क् का समद्विभाजक च्फ खींचिए जोठक् को बिन्दु।पर प्रतिच्छेद करता है ;देख्िाए आकृति 11ण्5द्ध। ।ब् को मिलाइए। तब, ।ठब् अभीष्ट त्रिाभुज है। ध्यान दीजिए कि ।ए ब्क् के लंब समद्विभाजक पर स्िथत है, अतः ।क् त्र ।ब् है। आकृति 11ण्5 टिप्पणी रू त्रिाभुज की रचना संभव नहीं होगी यदि योग ।ठ ़ ।ब् ≤ ठब् हो। रचना 11ण्5 रू एक त्रिाभुज की रचना करना जिसका आधर, एक आधर कोण तथा अन्य दो भुजाओं का अन्तर दिया हो। आधर ठब्ए एक कोण, माना∠ठए तथा अन्यदो भुजाओं का अन्तर ;।ठ दृ ।ब्द्ध या ;।ब् दृ ।ठद्ध दिया है। आपको त्रिाभुज ।ठब् की रचना करनी है। स्पष्टतः निम्न दो स्िथतियाँ हैंः स्िथति ;पद्ध रू मान लीजिए ।ठ झ ।ब् है, अथार्त् ।ठ दृ ।ब् दिया है। रचना के चरण रू 1ण् आधर ठब् खींचिए और बिन्दु ठ पर दिए गए कोण के बराबर एक कोण, मान लीजिए कोण ग्ठब्ए बनाइए। 2ण् किरण ठग् से ।ठ दृ ।ब् के बराबर रेखाखंड ठक् काटिए। 3ण् क्ब् को मिलाइए और क्ब् का लम्ब समद्विभाजक च्फ खींचिए। 4ण् माना कि वह ठग् को बिन्दु। पर प्रतिच्छेद करता है। ।ब् को मिलाइए ;देख्िाए आकृति 11ण्6द्ध। आकृति 11ण्6 तब,।ठब् अभीष्ट त्रिाभुज है। आइए अब हम देखें कि किस प्रकार आपने अभीष्ट त्रिाभुज प्राप्त किया है। दिए गए मापन के अनुसार आधर ठब् और ∠ठ बनाए गए हैं। बिन्दु ।ए क्ब् के लंब समद्विभाजक पर स्िथत है। अतःए ।क् त्र।ब् इसलिए, ठक् त्र।ठ दृ ।क् त्र ।ठ दृ ।ब् स्िथति ;पपद्ध रू मान लीजिए ।ठ ढ ।ब् है, अथार्त् ।ब् दृ ।ठ दिया हुआ है। रचना के चरण रू 1ण् वही जैसा स्िथति ;पद्ध में। 2ण् विपरीत दिशा में बढ़ी हुइर् रेखा ठग् से ।ब् दृ ।ठ के बराबर एक रेखाखंड ठक् काटिए। 3ण् क्ब् को मिलाइए तथा क्ब् का लम्ब समद्विभाजक च्फ खींचिए। आकृति 11ण्7 4ण् मान लीजिए कि च्फए ठग् को । पर प्रतिच्छेद करती है। ।ब् को मिलाइए ;देख्िाए आकृति 11ण्7द्ध। तब, ।ठब् अभीष्ट त्रिाभुज है। आप रचना की पुष्िट स्िथति ;पद्ध की तरह ही कर सकते हैं। रचना 11ण्6 रू एक त्रिाभुज की रचना कीजिए जिसका परिमाप तथा दोनों आधर कोण दिए हों। आधर के कोण ∠ ठ तथा ∠ ब् और ;ठब् ़ ब्।़।ठद्ध दिए हैं। आपको त्रिाभुज।ठब् की रचना करनी है। रचना के चरण रू 1ण् ठब् ़ ब्। ़ ।ठ के बराबर एक रेखाखंड ग्ल्ए खींचिए। 2ण् ∠स्ग्ल् कोण ठ के बराबर तथा ∠डल्ग् कोण ब् के बराबर बनाइए। 3ण् ∠ स्ग्ल् तथा∠ डल्ग् को समद्विभाजित कीजिए। माना ये समद्विभाजक एक बिन्दु । पर प्रतिच्छेद करते हैं ख्देख्िाए आकृति 11ण्8;पद्ध,। 4ण् ।ग् का लंब समद्विभाजक च्फ तथा।ल् का लंब समद्विभाजक त्ै खींचिए। 5ण् मान लीजिए किच्फए ग्ल् को बिंदु ठ पर तथा त्ैए ग्ल् को बिंदु ब् पर प्रतिच्छेद करता है। ।ठ और ।ब् को मिलाइए ख्देख्िाए आकृति 11ण्8;पपद्ध,। तब।ठब् अभीष्ट त्रिाभुज है। रचना के समथर्न के लिए, आप पाते हैं कि ठए ।ग् के लंब समद्विभाजक पर स्िथत है। अतः, ग्ठ त्र ।ठ है। इसी प्रकार, ब्ल् त्र ।ब् है। इससे प्राप्त होता हैः ठब़्ब्। ़।ठत्र ठब् ़ ग्ठ ़ ब्ल् त्र ग्ल् पुनः ∠ठ।ग् त्र ∠।ग्ठ ;क्योंकि Δ ।ग्ठ में,।ठ त्र ग्ठद्ध तथा ∠।ठब् त्र ∠ठ।ग् ़ ∠।ग्ठ त्र 2 ∠।ग्ठ त्र ∠स्ग्ल् इसी प्रकार, ∠।ब्ठ त्र ∠डल्ग्, जैसा चाहिए था। उदाहरण 1 रू एक त्रिाभुज ।ठब् की रचना कीजिए जिसमें ∠ठ त्र 60°ए ∠ ब् त्र 45° और ।ठ ़ ठब् ़ ब्।त्र 11 बउ है। रचना के चरण रू 1ण् एक रेखाखंडच्फ त्र 11 बउ है ; त्र ।ठ ़ ठब् ़ ब्।द्ध खींचिए। 2ण् च् पर 60° का कोण तथा फ पर 45° का कोण बनाइए। आकृति 11ण्9 3ण् इन कोणों को समद्विभाजित कीजिए। मान लीजिए कि ये समद्विभाजक एक बिन्दु । पर प्रतिच्छेद करते हैं। 4ण् ।च् का लंब समद्विभाजक क्म् खींचिए जो च्फ को बिंदु ठ पर प्रतिच्छेद करता है और ।फ का लंब समद्विभाजक खींचिए जो च्फ को बिंदु ब् पर प्रतिच्छेद करता है। 5ण् ।ठ को और।ब् को मिलाइए ;देख्िाए आकृति 11ण्9द्ध। तब, ।ठब् अभीष्ट त्रिाभुज है। प्रश्नावली 11ण्2 1ण् एक त्रिाभुज ।ठब् की रचना कीजिए, जिसमें ठब् त्र 7बउए ∠ठ त्र 75° और।ठ ़ ।ब् त्र 13 बउ हो। 2ण् एक त्रिाभुज ।ठब् की रचना कीजिए, जिसमें ठब् त्र 8 बउए ∠ठ त्र 45° और।ठदृ।ब् त्र 3ण्5 बउ हो। 3ण् एक त्रिाभुजच्फत् की रचना कीजिए, जिसमें फत् त्र 6 बउए ∠फ त्र 60° औरच्त् दृ च्फ त्र 2 बउ हो। 4ण् एक त्रिाभुज ग्ल्र् की रचना कीजिए, जिसमें∠ल् त्र 30°ए ∠र् त्र 90° औरग्ल् ़ ल्र् ़ र्ग् त्र 11 बउ हो। 5ण् एक समकोण त्रिाभुज की रचना कीजिए, जिसका आधर 12 बउ और कणर् तथा अन्य भुजा का योग 18 बउ है। 11ण्4 सारांश इस अध्याय में, आपने पटरी और परकार की सहायता से निम्न रचनाएँ की हैंः 1ण् एक दिए हुए कोण को समद्विभाजित करना। 2ण् एक दिए हुए रेखाखंड का लंब समद्विभाजक खींचना। 3ण् 60° इत्यादि के कोण बनाना। 4ण् एक त्रिाभुज की रचना करना, जिसमें आधर, एक आधर कोण तथा अन्य दो भुजाओं का योग दिया हो। 5ण् एक त्रिाभुज की रचना करना, जिसमें आधर, एक आधर कोण तथा अन्य दो भुजाओं का अन्तर दिया हो। 6ण् एक त्रिाभुज की रचना करना, जिसका परिमाप एवं दो आधर कोण दिए हों।

>Chapter-11>

अध्याय 11

रचनाएँ

11.1 भूमिका

पिछले अध्यायों में आकृतियाँ, जो किसी प्रमेय को सिद्ध करने या प्रश्नों को हल करने में आवश्यक थीं, वे यथार्थ नहीं थीं। वे केवल आपको स्थिति का अनुभव करने तथा सही तर्क देने की सहायता के लिए खींची गईं थीं। तथापि, कभी-कभी शुद्ध आकृति की आवश्यकता होती है। उदाहरण के लिए, किसी बनने वाले भवन का मानचित्र बनाना, औजारों और मशीनों के विभिन्न भागों का खाका बनाना, सड़क का मानचित्र बनाना आदि। इन आकृतियों को बनाने के लिए कुछ आधारभूत ज्यामितीय उपकरणों की आवश्यकता होती है। आपके पास ज्योमेट्री बाक्स अवश्य होगा, जिसमें निम्न उपकरण होते हैंः

(i) अंशाकित पटरी (ruler), जिसके एक ओर सेंटीमीटर तथा मिलीमीटर चिन्हित होते हैं तथा दूसरी ओर इंच और उसके भाग चिन्हित होते हैं।

(ii) सेट-स्क्वायर का एक युग्म जिसमें एक के कोण 90º, 60º, तथा 30º तथा दूसरे के कोण 90º, 45º तथा 45º होते हैं।

(iii) डिवाइडर, जिसकी दोनों भुजाओं में दो नुकीले सिरे होते हैं। इन भुजाओं को समायोजित किया जा सकता है।

(iv) परकार, जिसमें पेंसिल लगाने का विधान होता है।

(v) चाँदा

सामान्यतः एक ज्यामितीय आकृति, जैसे कि त्रिभुज, वृत्त, चतुर्भुज, बहुभुज आदि जिनमें मापें दी हों को बनाने में इन सभी उपकरणों की आवश्यकता होती है, परन्तु ज्यामितीय रचना ज्यामितीय आकृति बनाने की वह प्रक्रिया है जिसमें केवल दो उपकरण- एक अंशांकनहीन पटरी (ungraduated) और एक परकार का प्रयोग होता है। उन रचनाओं में जिनमें माप भी दिए हों, आप अंशाकित पटरी और चाँदे का भी प्रयोग कर सकते हैं। इस अध्याय में, कुछ आधारभूत रचनाएँ बताई जाएँगी। इनका प्रयोग करके कुछ विशेष त्रिभुजों की रचना की जाएगी।

11.2 आधारभूत रचनाएँ

कक्षा VI में, आपने अध्ययन किया है कि किस प्रकार एक वृत्त, एक रेखाखंड का लंब समद्विभाजक, 30º, 45º, 60º, 90º और 120º के कोणों तथा एक दिए गए कोण के समद्विभाजक की रचना की जाती है। परन्तु इन रचनाओं के लिए उचित कारण नहीं बताए गए थे। इस अनुच्छेद में, आप इनमें से कुछ की रचनाएँ, कारण बताते हुए कि क्यों ये रचनाएँ प्रामाणिक हैं, करेंगे।

रचना 11.1:  एक दिए हुए कोण के समद्विभाजक की रचना करना।

एक कोण ABC दिया है। हम इसके समद्विभाजक की रचना करना चाहते हैं।

रचना के चरण :

1. B को केन्द्र मानकर तथा कोई त्रिज्या लेकर एक चाप लगाइए जो किरण BA और BC को क्रमशः, मान लीजिए, E और D पर प्रतिच्छेद करता है [देखिए आकृति 11.1(i)]।

2. पुनः D और E को केन्द्र मानकर तथा DE से बड़ी त्रिज्या लेकर चाप लगाइए, जो
(मान लीजिए) एक दूसरे को
F पर प्रतिच्छेद करते हैं।

3. किरण BF खींचिए [देखिए आकृति 11.1(ii)]।

यही किरण BF, कोण ABC का अभीष्ट समद्विभाजक है।

आकृति 11.1

आइए हम देखें कि इस विधि से कोण समद्विभाजक किस प्रकार प्राप्त हुआ है।

DF और EF को मिलाइए। अब त्रिभुजों BEF तथा BDF में,

BE = BD (एक ही चाप की त्रिज्याएँ)

EF = DF (समान त्रिज्या वाले चाप)

BF = BF (उभयनिष्ठ)

अतः, BEF BDF (SSS नियम)

इससे प्राप्त होता है:  EBF = DBF (CPCT)

रचना 11.2 : एक दिए गए रेखाखंड के लम्ब समद्विभाजक (लम्बार्धक) की रचना करना।

एक रेखाखंड AB दिया है। हम इसके लम्ब समद्विभाजक की रचना करना चाहते हैं।

रचना के चरण :

1. A और B को केन्द्र मानकर तथा AB से अधिक त्रिज्या लेकर रेखाखंड AB के दोनों ओर (एक दूसरे को प्रतिच्छेद करते हुए)। चाप लगाइए

2. मान लीजिए कि ये चाप एक दूसरे को P और Q पर प्रतिच्छेद करते हैं। PQ को मिलाइए (देखिए आकृति 11.2)।


आकृति 11.2

3. मान लीजिए PQ, AB को बिन्दु M पर प्रतिच्छेद करती है।

तब रेखा PMQ, AB का अभीष्ट लम्ब समद्विभाजक है।

आइए हम देखें कि यह विधि किस प्रकार AB का लम्ब समद्विभाजक देती है।

A और B को P और Q से मिलाइए जिससे AP, AQ, BP तथा BQ प्राप्त होते हैं।

त्रिभुजों PAQ तथा PBQ में,

      AP = BP                                                        (समान त्रिज्या वाले चाप)

     AQ = BQ                          (समान त्रिज्या वाले चाप)

    PQ = PQ                                    (उभयनिष्ठ)

अतः,                                  PAQ PBQ                               (SSS नियम)

इसलिए,                   APM = BPM                                       (CPCT)

अब त्रिभुजों PMA तथा PMB में,

                AP = BP                     (पहले की तरह)

             PM = PM                            (उभयनिष्ठ)

APM = BPM           (ऊपर सिद्ध किया जा चुका है)

अतः, PMA PMB (SAS नियम)

इसलिए, AM = BM और PMA = PMB             (CPCT नियम)

क्योंकि PMA + PMB = 180° (रैखिक युग्म अभिगृहीत)

हम पाते हैंः

PMA = PMB = 90°

अतः PM, अर्थात् PMQ, रेखाखंड AB का लम्ब समद्विभाजक है।

रचना 11.3 : एक दी गई किरण के प्रारंभिक बिन्दु पर 60º के कोण की रचना करना।

आइए हम प्रारंभिक बिन्दु A वाली किरण AB लें [देखिए आकृति 11.3(i) ]। हम एक किरण AC की रचना करना चाहते हैं, जिससे कि CAB = 60° हो। इसको करने की एक विधि नीचे दी है।

रचना के चरण :

1. A को केन्द्र मानकर और कोई त्रिज्या लेकर एक वृत्त का चाप खींचिए, जो AB को मान लीजिए एक बिन्दु D पर प्रतिच्छेद करता है।

2. D को केन्द्र मानकर और उसी त्रिज्या, जो पहले ली गई थी, से एक चाप खींचिए, जो चरण 1 में खींचें गए चाप को बिन्दु E पर प्रतिच्छेद करता है।

3. E से जाने वाली किरण AC खींचिए [देखिए आकृति 11.3 (ii)]।


आकृति 11.3

तब CAB ही 60° का अभीष्ट कोण है।

अब आइए देखें कि यह विधि कैसे 60° का कोण देती है।

DE को मिलाइए।

तब, AE = AD = DE (रचना से)

अतः, EAD एक समबाहु त्रिभुज है और EAD, जो कि CAB के बराबर है, 60° का है।

प्रश्नावली 11.1

1. एक दी हुई किरण के प्रारंभिक बिन्दु पर 900 के कोण की रचना कीजिए और कारण सहित रचना की पुष्टि कीजिए।

2. एक दी हुई किरण के प्रारंभिक बिन्दु पर 450 के कोण की रचना कीजिए और कारण सहित रचना की पुष्टि कीजिए।

3. निम्न मापों के कोणों की रचना कीजिए :

(i) 30° (ii) 22 ° (iii) 15°

4. निम्न कोणों की रचना कीजिए और चाँदे द्वारा मापकर पुष्टि कीजिए :

(i) 75° (ii) 105° (iii) 135°

5. एक समबाहु त्रिभुज की रचना कीजिए, जब इसकी भुजा दी हो तथा कारण सहित रचना कीजिए।

11.3 त्रिभुजों की कुछ रचनाएँ

अभी तक कुछ आधारभूत रचनाओं पर विचार किया गया है। पिछली कक्षाओं में की गई रचनाओं और उपर्युक्त वर्णित रचनाओं का प्रयोग कर, अब कुछ त्रिभुजों की रचनाएँ की जाएँगी। अध्याय 7 से स्मरण कीजिए कि SAS, SSS, ASA तथा RHS दो त्रिभुजों की सर्वांगसमता के नियम हैं। अतः एक त्रिभुज अद्वितीय होता है, यदि (i) दो भुजाएँ और बीच का कोण दिए हों, (ii) तीनों भुजाएँ दी हों, (iii) दो कोण और बीच की भुजा दी हो तथा (iv) समकोण त्रिभुज में कर्ण और एक भुजा दी हो। आपने कक्षा VII में इन त्रिभुजों की रचना करना सीखा है। आइए, अब हम त्रिभुजों की कुछ और रचनाओं पर विचार करें। आपने ध्यान दिया होगा कि किसी त्रिभुज की रचना के लिए, कम से कम उसके तीन भाग दिए होने चाहिए। परन्तु तीन भागों के सभी संचय (combinations) इसके लिए पर्याप्त नहीं हैं। उदाहरण के लिए, यदि दो भुजाएँ तथा एक कोण (बीच का कोण नहीं) दिए हों। तो अद्वितीय रूप से त्रिभुज की रचना सदैव संभव नहीं है।

रचना 11.4 : दिए हुए आधार, एक आधार कोण तथा अन्य दो भुजाओं के योग से त्रिभुज की रचना करना।

एक त्रिभुज ABC में आधार BC, एक आधार कोण माना B तथा अन्य दो भुजाओं का योग AB + AC दिया है। आपको त्रिभुज ABC की रचना करनी है।

रचना के चरण :

1. आधार BC खींचिए और बिन्दु B पर दिए गए कोण के बराबर XBC बनाइए।

2. किरण BX से AB + AC के बराबर रेखाखंड BD काटिए।

3. DC को मिलाइए तथा BDC के बराबर कोण DCY बनाइए।

4. मान लीजिए CY, BX को A पर प्रतिच्छेदित करती है (देखिए आकृति 11.4)।


आकृति 11.4

तब, ABC अभीष्ट त्रिभुज है।

आइए देखें कि आपने अभीष्ट त्रिभुज कैसे प्राप्त किया।

दिए गए मापन अनुसार, आधार BC तथा B बनाए गए हैं। पुनः त्रिभुज ACD में,

ACD = ADC (रचना से)

अतः AC = AD होगा, और फिर

AB = BD – AD = BD – AC

अर्थात् AB + AC = BD

वैकल्पिक विधि :

उपर्युक्त दो चरणों की पुनरावृत्ति कीजिए। पुनः CD का समद्विभाजक PQ खींचिए जो BD को बिन्दु A पर प्रतिच्छेद करता है (देखिए आकृति 11.5)। AC को मिलाइए। तब, ABC अभीष्ट त्रिभुज है। ध्यान दीजिए कि A, CD के लंब समद्विभाजक पर स्थित है, अतः AD = AC है।


आकृति 11.5

टिप्पणी : त्रिभुज की रचना संभव नहीं होगी यदि योग AB + AC BC हो।

रचना 11.5 : एक त्रिभुज की रचना करना जिसका आधार, एक आधार कोण तथा अन्य दो भुजाओं का अन्तर दिया हो।

आधार BC, एक कोण, माना B, तथा अन्य दो भुजाओं का अन्तर (AB – AC) या (AC – AB) दिया है। आपको त्रिभुज ABC की रचना करनी है। स्पष्टतः निम्न दो स्थितियाँ हैंः

स्थिति (i) : मान लीजिए AB > AC है, अर्थात् AB – AC दिया है।

रचना के चरण :

1. आधार BC खींचिए और बिन्दु B पर दिए गए कोण के बराबर एक कोण, मान लीजिए कोण XBC, बनाइए।

2. किरण BX से AB – AC के बराबर रेखाखंड BD काटिए।

3. DC को मिलाइए और DC का लम्ब समद्विभाजक PQ खींचिए।

4. माना कि वह BX को बिन्दु A पर प्रतिच्छेद करता है। AC को मिलाइए (देखिए आकृति 11.6)।


आकृति 11.6

तब, ABC अभीष्ट त्रिभुज है।

आइए अब हम देखें कि किस प्रकार आपने अभीष्ट त्रिभुज प्राप्त किया है।

दिए गए मापन के अनुसार आधार BC और B बनाए गए हैं। बिन्दु A, DC के लंब समद्विभाजक पर स्थित है।

अतः, AD = AC

इसलिए, BD = AB – AD = AB – AC

स्थिति (ii) : मान लीजिए AB < AC है, अर्थात् AC – AB दिया हुआ है।

रचना के चरण :

1. वही जैसा स्थिति (i) में।

2. विपरीत दिशा में बढ़ी हुई रेखा BX से AC – AB के बराबर एक रेखाखंड BD काटिए।

3. DC को मिलाइए तथा DC का लम्ब समद्विभाजक PQ खींचिए।

4. मान लीजिए कि PQ, BX को A पर प्रतिच्छेद करती है। AC को मिलाइए (देखिए आकृति 11.7)।


आकृति 11.7

तब, ABC अभीष्ट त्रिभुज है।

आप रचना की पुष्टि स्थिति (i) की तरह ही कर सकते हैं।

रचना 11.6 : एक त्रिभुज की रचना कीजिए जिसका परिमाप तथा दोनों आधार कोण दिए हों।

आधार के कोण B तथा C और (BC + CA + AB) दिए हैं। आपको त्रिभुज ABC की रचना करनी है।

रचना के चरण :

1. BC + CA + AB के बराबर एक रेखाखंड XY, खींचिए।

2. LXY कोण B के बराबर तथा MYX कोण C के बराबर बनाइए।

3. LXY तथा MYX को समद्विभाजित कीजिए। माना ये समद्विभाजक एक बिन्दु A पर प्रतिच्छेद करते हैं [देखिए आकृति 11.8(i)]।

आकृति 11.8 (i)

4. AX का लंब समद्विभाजक PQ तथा AY का लंब समद्विभाजक RS खींचिए।

5. मान लीजिए कि PQ, XY को बिंदु B पर तथा RS, XY को बिंदु C पर प्रतिच्छेद करता है। AB और AC को मिलाइए [देखिए आकृति 11.8(ii)]।

आकृति 11.8 (ii)

तब ABC अभीष्ट त्रिभुज है। रचना के समर्थन के लिए, आप पाते हैं कि B, AX के लंब समद्विभाजक पर स्थित है।

अतः, XB = AB है। इसी प्रकार, CY = AC है।

इससे प्राप्त होता हैः BC + CA + AB = BC + XB + CY = XY

पुनः BAX = AXB (क्योंकि AXB में, AB = XB)

तथा ABC = BAX + AXB = 2 AXB = LXY

इसी प्रकार, ACB = MYX, जैसा चाहिए था।

उदाहरण 1 : एक त्रिभुज ABC की रचना कीजिए जिसमें B = 60°, C = 45° और AB + BC + CA = 11 cm है।

रचना के चरण :

1. एक रेखाखंड PQ = 11 cm है ( = AB + BC + CA) खींचिए।

2. P पर 60° का कोण तथा Q पर 45° का कोण बनाइए।

आकृति 11.9

3. इन कोणों को समद्विभाजित कीजिए। मान लीजिए कि ये समद्विभाजक एक बिन्दु A पर प्रतिच्छेद करते हैं।

4. AP का लंब समद्विभाजक DE खींचिए जो PQ को बिंदु B पर प्रतिच्छेद करता है और AQ का लंब समद्विभाजक खींचिए जो PQ को बिंदु C पर प्रतिच्छेद करता है।

5. AB को और AC को मिलाइए (देखिए आकृति 11.9)।

तब, ABC अभीष्ट त्रिभुज है।

प्रश्नावली 11.2

1. एक त्रिभुज ABC की रचना कीजिए, जिसमें BC = 7 cm, B = 75° और AB + AC = 13 cm हो।

2. एक त्रिभुज ABC की रचना कीजिए, जिसमें BC = 8 cm, B = 45° और AB – AC = 3.5 cm हो।

3. एक त्रिभुज PQR की रचना कीजिए, जिसमें QR = 6 cm, Q = 60° और PR – PQ = 2 cm हो।

4. एक त्रिभुज XYZ की रचना कीजिए, जिसमें Y = 30°, Z = 90° और XY + YZ + ZX = 11 cm हो।

5. एक समकोण त्रिभुज की रचना कीजिए, जिसका आधार 12 cm और कर्ण तथा अन्य भुजा का योग 18 cm है।

11.4 सारांश

इस अध्याय में, आपने पटरी और परकार की सहायता से निम्न रचनाएँ की हैंः

1. एक दिए हुए कोण को समद्विभाजित करना।

2. एक दिए हुए रेखाखंड का लंब समद्विभाजक खींचना।

3. 60° इत्यादि के कोण बनाना।

4. एक त्रिभुज की रचना करना, जिसमें आधार, एक आधार कोण तथा अन्य दो भुजाओं का योग दिया हो।

5. एक त्रिभुज की रचना करना, जिसमें आधार, एक आधार कोण तथा अन्य दो भुजाओं का अन्तर दिया हो।

6. एक त्रिभुज की रचना करना, जिसका परिमाप एवं दो आधार कोण दिए हों।

RELOAD if chapter isn't visible.