अध्याय 12 हम प्रतिदिन विभ्िान्न स्रोतोंऋ जैसेμमानवों, पक्ष्िायों, घंटियों, मशीनों, वाहनों, टेलिविशन, रेडियो आदि कीध्वनि सुनते हैं। ध्वनि ऊजार् का एक रूप है जो हमारेकानों में श्रवण का संवेदन उत्पन्न करती है। ऊजार् केअन्य रूप भी हैंऋ जैसेμयांत्रिाक ऊजार्, ऊष्मीय ऊजार्,प्रकाश ऊजार् आदि। पिछले अध्यायों में आप यांत्रिाकऊजार् का अध्ययन कर चुके हैं। आपको ऊजार् संरक्षणके बारे में ज्ञात है। इसके अनुसार आप ऊजार् को न तो उत्पन्न कर सकते हैं और न ही उसका विनाश कर सकते हैं। आप इसे केवल एक से दूसरे रूप में रूपांतरित कर सकते हैं। जब आप ताली बजाते हैं तोध्वनि उत्पन्न होती है। क्या आप अपनी ऊजार् का उपयोग किए बिना ध्वनि उत्पन्न कर सकत हैं? ध्वनिउत्पन्न करने के लिए आपने ऊजार् के किस रूप का उपयोग किया? इस अध्याय में हम सीखेंगे कि ध्वनि वैफसे उत्पन्न होती है और किसी माध्यम में यह किस प्रकार संचरित होकर हमारे कानों द्वारा ग्रहण की जाती है। 12ण्1 ध्वनि का उत्पादन ियाकलापऋऋऋऋऋऋऋऋऋऋऋऋऋऋ12ण्1 ऽ एक स्वरित्रा द्विभुज लीजिए और इसकी किसी भुजा को एक रबड़ के पैड पर मार कर इसे वंफपित कराइए। ऽ इसे अपने कान के समीप लाइए। ऽ क्या आप कोइर् ध्वनि सुन पाते हैं? वंफपमानस्वरिध् द्विभुज की एक भुजा को अपनी अंगुली से स्पशर् कीजिए और अपने अनुभव को अपने मित्रों के साथ बाँटिए। ध्वनि ;ैवनदकद्ध ऽ अब एक टेबल टेनिस या एक छोटी प्लास्िटक की गेंद को एक धागे की सहायता से किसी आधर से लटकाइए ;एक लंबी सूइर् और धगा लीजिए। धगे के एक सिरे पर एक गाँठ लगाइए और सूइर् की सहायता से धगे को गेंद में पिरोइएद्ध।पहले वफंपन न करते हुए स्वरिध् द्विभुज की एक भुजा से गंेद को स्पशर् कीजिए। पिफर कंपन करते हुए स्वरित्रा द्विभुज की एक भुजा से गेंद को स्पशर् कीजिए ;चित्रा 12.1द्ध। ऽ देख्िाए क्या होता है? अपने मित्रों के साथ विचार - विमशर् कीजिए और दोनों अवस्थाओं मंे अंतर की व्याख्या करने का प्रयत्न कीजिए। चित्रा 12ण्1रू वंफपमान स्वरिध् द्विभुज लटकी हुइर् टेबल टेनिस की गंेद को स्पशर् करते हुए ियाकलापऋऋऋऋऋऋऋऋऋऋऋऋऋऋ12ण्2 ऽ एक बीकर या गिलास को ऊपर तक पानी सेभरिए। वंफपमान स्वरिध् द्विभुज की एक भुजा को चित्रा 12.2 में दशार्ए अनुसार पानी की सतह से स्पशर् कराइए। ऽ अब चित्रा 12.3 मंे दशार्ए अनुसार वंफपमान स्वरिध् द्विभुज की दोनों भुजाओं को पानी में डुबोइए। ऽ देख्िाए कि दोनों अवस्थाओं में क्या होता है? ऽ अपने साथ्िायों के साथ विचार - विमशर् कीजिए कि ऐसा क्यों होता है? चित्रा 12ण्2रू वंफपमान स्वरिध् द्विभुज की एक भुजा पानी की सतह को स्पशर् करते हुए चित्रा 12ण्3रू वंफपमान स्वरित्रा द्विभुज की दोनों भुजाएँ पानी में डूबी हुइर् उपरोक्त ियाकलापों से आप क्या निष्कषर् निकालते हैं? क्या आप किसी वंफपमान वस्तु के बिना ध्वनि उत्पन्न कर सकते हैं?अब तक वण्िार्त ियाकलापों में हमने स्वरिध् द्विभुज से आघात द्वारा ध्वनि उत्पन्न की। हम विभ्िान्न वस्तुओं में घषर्ण द्वारा, खुरच कर, रगड़ कर, वायु पँूफक कर या उनको हिलाकर ध्वनि उत्पन्न कर सकते हैं। इन ियाकलापों में हम क्या करते हैं? हम वस्तु को वंफपमान करते हैं और ध्वनि उत्पन्न करते हैं। कंपन का अथर् होता है किसी वस्तु का तेशी से बार - बार इध्र - उध्र गति करना। मनुष्यों में वाकध्वनि उनके वाक - तंतुओं के वंफपित होने के कारण उत्पन्न होती है। जब कोइर् पक्षी अपने पंख को पफड़पफड़ाता है तो क्या आप कोइर् ध्वनि सुनते हैं? क्या आप जानते हैं कि मक्खी भ्िानभ्िानाने की ध्वनि वैफसे उत्पन्न करती है? एक खींचे हुए रबड़ के छल्ले को बीच में से खींच कर छोड़ने पर यह वंफपन करता है और ध्वनि उत्पन्न करता है। यदि आपने कभी ऐसा नहीं किया है तो इसे कीजिए और तनी हुइर् रबड़ के छल्ले के कंपनों को देख्िाए। ियाकलापऋऋऋऋऋऋऋऋऋऋऋऋऋऋ 12ण्3 ऽ विभ्िान्न वाद्य यंत्रों की सूची बनाइए और अपने मित्रों के साथ विचार - विमशर् कीजिए कि ध्वनि उत्पन्न करने के लिए इन वाद्य यंत्रों का कौन - सा भाग कंपन करता है। 12ण्2 ध्वनि का संचरण हम जानते हैं कि ध्वनि वंफपन करती हुइर् वस्तुओं द्वारा उत्पन्न होती है। द्रव्य या पदाथर् जिससे होकर ध्वनि संचरित होती है, माध्यम कहलाता है। यह ठोस, द्रव या गैस हो सकता है। स्रोत से उत्पन्न होकर ध्वनि सुनने वाले तक किसी माध्यम से होकर पहुँचती है। जब कोइर् वस्तु कंपन करती है तो यह अपने चारों ओर विद्यमान माध्यम के कणों को वंफपमान कर देती है। ये कण वंफपमान वस्तु से हमारे कानों तक स्वयं गति कर नहीं पहुँचते। सबसे पहले वंफपमान वस्तु के संपवर्फ में रहने वाले माध्यम के कण अपनी संतुलित अवस्था से विस्थापित होते हैं। ये अपने समीप के कणों पर एक बल लगाते हैं। जिसके पफलस्वरूप निकटवतीर् कण अपनी विरामावस्था से विस्थापित हो जाते हैं। निकटवतीर् कणों को विस्थापित करने के पश्चात्् प्रारंभ्िाक कण अपनी मूल अवस्थाओं में वापस लौट आते हैं। माध्यम में यह प्रिया तब तक चलती रहती है जब तक कि ध्वनि आपके कानों तक नहीं पहुँच जाती है। माध्यम में ध्वनि द्वारा उत्पन्न क्या ध्वनि एक प्रकाश ध्ब्बे को नृत्य करा सकती है? एक टिन का डिब्बा लीजिए। इसके दोनों सिरों को काट कर एक खोखला बेलन बना लीजिए। एक गुब्बारा लीजिए। उसको इस प्रकार काटें कि उसकी एक झिल्ली बन जाए। इस झिल्ली को खींच कर डिब्बे केएक खुले सिरे के ऊपर तान दीजिए। गुब्बारे के चारों ओर एक रबड़ का छल्ला लपेट दीजिए। समतल दपर्ण का एक छोटा टुकड़ा लीजिए। दपर्ण के इस टुकड़े को गांेद की सहायता से गुब्बारे से इस प्रकार चिपकाइएकि उसकी चमकदार सतह ऊपर की ओर हो। एक झिरीर् ;स्िलटद्ध से आने वाले प्रकाश को दपर्ण पर पड़ने दीजिए। परावतर्न के पश्चात्् प्रकाश का ध्ब्बा दीवार पर पहुँचता है, जैसा कि चित्रा 12.4 में दशार्या गया है। डिब्बे के खुले भाग में सीध्े ही बात कीजिए या चिल्लाइए और दीवार पर प्रकाश के ध्ब्बे को नाचते हुए देख्िाए। अपने मित्रों से प्रकाश के ध्ब्बे के नाचने के कारण के बारे में चचार् कीजिए। ज परावतर्क पर गिराया जाता है। पराव£तत प्रकाश दीवार पर गिर रहा हैँप्रकाश स्रोत से आने वाला एक प्रकाश पु12ण्4रूचित्रा विक्षोभ ;माध्यम के कण नहींद्ध माध्यम से होता हुआ संचरित होता है। तरंग एक विक्षोभ है जो किसी माध्यम से होकर गति करता है और माध्यम के कण निकटवतीर् कणों में गति उत्पन्न कर देते हैं। ये कण इसी प्रकार की गति अन्य कणों में उत्पन्न करते हैं। माध्यम के कण स्वयं आगे नहीं बढ़ते, लेकिन विक्षोभ आगे बढ़ जाता है। किसी माध्यम में ध्वनि के संचरण के समय ठीक ऐसा ही होता है। इसलिए ध्वनि को तरंग के रूप में जाना जा सकता है। ध्वनि तरंगें माध्यम के कणों की गति द्वारा अभ्िालक्ष्िात की जाती हैं और यांत्रिाक तरंगें कहलाती हैं। ध्वनि के संचरण के लिए वायु सबसे अध्िक सामान्य माध्यम है। जब कोइर् वंफपमान वस्तु आगे की ओर वंफपन करती है तो अपने सामने की वायु को धक्का देकर संपीडित करती है और इस प्रकार एक उच्च दाब का क्षेत्रा उत्पन्न होता है। इस क्षेत्रा को संपीडन ;ब्द्ध कहते हैं ;चित्रा 12.5द्ध। यह संपीडन वंफपमान वस्तु से दूर आगे की ओर गति करता है। जब वंफपमान वस्तु पीछे की ओर वंफपन करती है तो एक निम्न दाब का क्षेत्रा उत्पन्न होता है जिसे विरलन ;त्द्ध कहते हैं ;चित्रा 12.5द्ध। जब वस्तु कंपन करती है चित्रा 12ण्5रू वंफपमान वस्तु किसी माध्यम में संपीडन ;ब्द्ध तथा विरलन ;त्द्ध की श्रेणी उत्पन्न करते हुए अथार्त आगे और पीछे तेजी से गति करती है तो वायु़में संपीडन और विरलन की एक श्रेणी बन जाती है। यही संपीडन और विरलन ध्वनि तरंग बनाते हैं जो माध्यम से होकर संचरित होती है। संपीडन उच्च दाब का क्षेत्रा है और विरलन निम्न दाब का क्षेत्रा है। दाब किसी माध्यम के दिए हुए आयतन में कणों की संख्या से संबंध्ित है। किसी माध्यम में कणों का अध्िक घनत्व अध्िक दाब को और कम घनत्व कम दाब को दशार्ता है। इस प्रकार ध्वनि का संचरण घनत्व परिवतर्न के संचरण के रूप में भी देखा जा सकता है। श्न 1ण् किसी माध्यम में ध्वनि द्वारा उत्पन्न विक्षोभ आपके कानों तक वैफसे पहुँचता है?प्र 12ण्2ण्1 ध्वनि संचरण के लिए माध्यम की आवश्यकता होती है। ध्वनि एक यांत्रिाक तरंग है और इसके संचरण के लिए किसी माध्यमऋ जैसेμवायु, जल, स्टील आदि की आवश्यकता होती है। यह निवार्त में होकर नहीं चल सकती। इसे निम्न प्रयोग द्वारा प्रदश्िार्त किया जा सकता है। प्रयोगरू एक विद्युत घंटी और एक काँच का वायुरु( बेलजार लीजिए। विद्युत घंटी को बेलजार में लटकाइए। बेलजार को चित्रा 12.6 की भाँति एक निवार्त पंप से जोडि़ए। घंटी के स्िवच को दबाने पर आप उसकी ध्वनि को सुन सकते हैं। अब निवार्त पंप को चलाइए। जब बेलजार की वायु धीरे - धीरे बाहर निकलती है, घंटी की ध्वनि ध्ीमी हो जाती है यद्यपि उसमें पहले जैसी ही विद्युतधरा प्रवाहित हो रही है। वुफछ समय पश्चात् जब बेलजार में बहुत कम वायु रह जाती है तब आपको बहुत ध्ीमी ध्वनि सुनाइर् पड़ती है। यदि बेलजार की समस्त वायु निकाल दी जाए तो क्या होगा? क्या तब भी आप घंटी की ध्वनि सुन पाएँगे? 182 प्र चित्रा 12ण्6रू निवार्त में ध्वनि का संचरण नहीं हो सकता यह दशार्ने के लिए बेलजार का प्रयोग श्न 1ण् आपके विद्यालय की घंटी, ध्वनि वैफसे उत्पन्न करती है? 2ण् ध्वनि तरंगों को यांत्रिाक तरंगें क्यों कहते हैं? 3ण् मान लीजिए आप अपने मित्रा के साथ चंद्रमा पर गए हुए हैं। क्या आप अपने मित्रा द्वारा उत्पन्न ध्वनि को सुन पाएँगे? 12ण्2ण्2 ध्वनि तरंगें अनुदैघ्यर् तरंगें हैं ियाकलापऋऋऋऋऋऋऋऋऋऋऋऋऋऋ12ण्4 ऽ एक स्िलंकी लीजिए। अब स्िलंकी को चित्रा 12ण्7 ;ंद्ध में दशार्ए अनुसार खींचिए। अपने मित्रा की ओर स्िलंकी को एक तीव्र झटका दें। ऽ आप क्या देखते हैं? यदि आप अपने हाथ से स्िलंकी को लगातार आगे - पीछे बारी - बारी से ध्क्का देते और खींचते रहें, तो आप क्या देखेंगे? ;इद्ध चित्रा 12ण्7रू स्िलंकी में अनुदैघ्यर् तरंग ऽ यदि आप स्िलंकी पर एक चिह्न लगा दें, तो आप देखेंगे कि स्िलंकी पर लगा चिह्न विक्षोभ के संचरण की दिशा के समांतर आगे - पीछे गति करता है। उन क्षेत्रों को जहाँ स्िलंकी की वुंफडलियाँ पास - पास आ जाती हैं संपीडन ;ब्द्ध और उन क्षेत्रों को जहाँ वुंफडलियाँ दूर - दूर हो जाती हैं विरलन ;त्द्ध कहते हैं। आप जानते हैं कि किसी माध्यम में ध्वनि संपीडनों तथा विरलनों के रूप में संचरित होती है। अब आप किसी स्िलंकी में विक्षोभ के संचरण तथा किसी माध्यम में विक्षोभ की तुलना कर सकते हैं। ये तरंगंे अनुदैघ्यर् तरंगें कहलाती हैं। इन तरंगों में माध्यम के कणों का विस्थापन विक्षोभ के संचरण की दिशा के समांतर होता है। कण एक स्थान से दूसरे स्थान तक गति नहीं करते लेकिन अपनी विराम अवस्था से आगे - पीछे दोलन करते हैं। ठीक इसी प्रकार ध्वनि तरंगें संचरित होती हैं, अतएव ध्वनि तरंगें अनुदैघ्यर् तरंगें हैं। यदि आप स्िलंकी के अपने हाथ में पकड़े सिरे को आगे - पीछे ध्क्का न देकर दाएँ - बाएँ हिलाएँ तब भी आपको स्िलंकी में तरंग उत्पन्न होती दिखाइर् देगी। इस तरंग में कण तरंग संचरण की दिशा में कंपन नहीं करते लेकिन तरंग के चलने की दिशा के लंबवत् अपनीविराम अवस्था के ऊपर - नीचे कंपन करते हैं। इस प्रकार की तरंग को अनुप्रस्थ तरंग कहते हैं। इस प्रकार अनुप्रस्थ तरंग वह तरंग है जिसमें माध्यम के कण अपनी माध्य स्िथतियों पर तरंग के संचरण की दिशा के लंबवत् गति करते हैं। आप अनुप्रस्थ तरंगों के बारे में अध्िक जानकारी उच्च कक्षाओं में प्राप्त करेंगे। प्रकाश भी अनुप्रस्थ तरंग है। किंतु प्रकाश में दोलन माध्यम के कणों या उनके दाब या घनत्व के नहीं होते। प्रकाश तरंगें यांत्रिाक तरंगें नहीं हैं। 12ण्2ण्3 ध्वनि तरंग के अभ्िालक्षण किसी ध्वनि तरंग के निम्नलिख्िात अभ्िालक्षण होते हैं: ऽ आवृिा ऽ आयाम ऽ वेग ध्वनि तरंग को ग्रापफीय रूप में चित्रा 12ण्8;बद्ध में दिखाया गया है, जो प्रदश्िार्त करता है कि जब ध्वनि तरंग किसी माध्यम में गति करती है तो घनत्व तथादाब में वैफसे परिवतर्न होता है। किसी निश्िचत समय पर माध्यम का घनत्व तथा दाब दोनों ही उनके औसतमान से ऊपर और नीचे दूरी के साथ परिवतिर्त होते हैं। चित्रा 12.8;ंद्ध तथा 12.8;इद्ध प्रदश्िार्त करते हैं कि जब ध्वनि तरंग माध्यम में संचरित होती है तो घनत्वतथा दाब में क्या उतार - चढ़ाव होते हैं। संपीडन वह क्षेत्रा है जहाँ कण पास - पास आ जातेहैं, इन्हें वक्र के ऊपरी भाग में दिखाया गया है ख्चित्रा 12.8 ;बद्ध, । श्िाखर अध्िकतम संपीडन के क्षेत्रा को प्रदश्िार्त करता है। इस प्रकार संपीडन वह क्षेत्रा है जहाँघनत्व तथा दाब दोनों ही अिाक होते है। विरलन निम्न दाब के क्षेत्रा हैं जहाँ कण दूर - दूर हो जाते हैंऔर उन्हें घाटी से प्रदश्िार्त करते हैं। इन्हें वक्र के निम्न भाग से दिखाया गया है ख्चित्रा 12.8;बद्ध,। श्िाखरको तरंग का शृंग तथा घाटी को गतर् कहा जाता है।दो क्रमागत संपीडनों ;ब्द्ध अथवा दो क्रमागत विरलनों ;त्द्ध के बीच की दूरी तरंगदैघ्यर् कहलाती है। तरंगदैघ्यर्को साधरणतः λ ;ग्रीक अक्षर लैम्डाद्ध से निरूपित किया जाता है। इसका ैप् मात्राक मीटर ;उद्ध है। हैनरिच रुडोल्पफ हटर््ज का जन्म़22 पफरवरी 1857 को हैमबगर्, जमर्नी में हुआ और उनकी श्िाक्षाबलिर्न विश्वविद्यालय में हुइर्। उन्होंने जे.सी. मैक्सवेल केहैनरिच रुडोल्पफ हटर््ज विद्युतचुंबकीय सि(ांत की प्रयोगों द्वारा पुष्िट की। उन्होंने रेडियो, टेलिपफोन, टेलिग्रापफ़तथा टेलिविशन के भी भविष्य में विकास की नींव रखी। उन्होंने प्रकाश - विद्युत प्रभाव की भीखोज की जिसकी बाद में अल्बटर् आइन्सटाइन नेव्याख्या की। आवृिा के ैप् मात्राक का नाम उनके सम्मान में रखा गया। चित्रा12ण्8रूचित्रा 12ण्8 ;ंद्धतथा 12ण्8 ;इद्धमें दिखाया गया है कि ध्वनि घनत्व या दाब के उतार - चढ़ाव के रूप में संचरित होती है। चित्रा 12ण्8 ;बद्धमें घनत्व तथा दाब के उतार - चढ़ाव को ग्रापफीय रूप में प्रदश्िार्त किया गया है। आवृिा से हमें ज्ञात होता है कि कोइर् घटना कितनी जल्दी - जल्दी घटित होती है। मान लीजिए आप किसी ढोल को पीट - पीट कर बजा रहे हैं। आप ढोल को एक सेकंड में जितनी बार पीटते हैं वहआपके द्वारा ढोल को पीटने की आवृिा है। हम जानते हैं कि जब ध्वनि किसी माध्यम में संचरित होती है तो माध्यम का घनत्व किसी अध्िकतम तथा न्यूनतम मान के बीच बदलता है। घनत्व के अध्िकतम मान से न्यूनतम मान तक परिवतर्न में और पुनः अध्िकतम मान तक आने पर एक दोलन पूरा होता है। एकांक समय में इन दोलनों की वुफल संख्याध्वनि तरंग की आवृिा कहलाती है। यदि हम प्रति एकांक समय में अपने पास से गुजरने वाले संपीडनों तथा विरलनों की संख्या की गणना करें तो हमकोध्वनि तरंग की आवृिा ज्ञात हो जाएगी। इसे सामान्यतया ;ग्रीक अक्षर, न्यूद्ध से प्रदश्िार्त किया जाता है। इसका ैप् मात्राक हटर््श ;ीमतज्रए प्रतीक भ््रद्ध है। दो क्रमागत संपीडनों या दो क्रमागत विरलनों को किसी निश्िचत बिंदु से गुजरने में लगे समय को तरंग का आवतर् काल कहते हैं। आप कह सकते हैं कि माध्यम में घनत्व के एक संपूणर् दोलन में लिया गया समय ध्वनि तरंग का आवतर् काल कहलाता है। इसे ज्अक्षर से निरूपित करते हैं। इसका ैप् मात्राक सेवंफड ;ेद्ध है। आवृिा तथा आवतर् काल के बीच संबंध् को निम्न प्रकार व्यक्त किया जा सकता है:1 ज्इस प्रकार एक उच्च तारत्व की ध्वनि से हमें ज्ञात होता है कि किसी बिंदु से एकांक समय में संपीडन तथा विरलन की अध्िक संख्या गुजरती है। किसी आरकेस्ट्रा ;वाद्यवृंदद्ध में वायलिन तथा बाँसुरी एक ही समय बजाइर् जा सकती हैं। दोनों ध्वनियाँ एक ही माध्यम ;वायुद्ध में चलती हैं और हमारे कानों तक एक ही समय पर पहुँचती हैं। दोनोंही ड्डोतों की ध्वनियाँ एक ही चाल से चलती हंै। लेकिन जो ध्वनियाँ हम ग्रहण करते हैं वे भ्िान्न - भ्िान्न हैं। ऐसा ध्वनि से जुड़े विभ्िान्न अभ्िालक्षणों के कारण है। तारत्व इनमें से एक अभ्िालक्षण है।किसी उत्सजिर्त ध्वनि की आवृिा को मस्ितष्क किस प्रकार अनुभव करता है, उसे तारत्व कहते हैं।किसी ड्डोत का कंपन जितनी शीघ्रता से होता है,आवृिा उतनी ही अध्िक होती है और उसका तारत्व भी अध्िक होता है। इसी प्रकार जिस ध्वनि का तारत्वकम होता है उसकी आवृिा भी कम होती है जैसा कि चित्रा 12.9 में दशार्या गया है। विभ्िान्न आकार तथा आवृफति की वस्तुएँ विभ्िान्नआवृिायों के साथ कंपन करती हैं और विभ्िान्न तारत्व की ध्वनियाँ उत्पन्न करती हैं। किसी माध्यम में मूल स्िथति के दोनों ओर अध्िकतम विक्षोभ को तरंग का आयाम कहते हैं। इसे साधरणतः अक्षर । से निरूपित किया जाता है। जैसा कि चित्रा 12ण्8;बद्ध में दिखाया गया है। ध्वनि के लिए इसका मात्राक दाब या घनत्व का मात्राक होगा। ध्वनि की प्रबलता अथवा मृदुता मूलतः इसके आयाम से ज्ञात की जाती है। यदि हम किसी मेज़ पर ध्ीरे से चोट मारें, तो हमंे एक मृदु ध्वनि सुनाइर् देगी क्योंकिहम कम ऊजार् की ध्वनि तरंग उत्पन्न करते हैं। यदि हम मेश पर जोर से चोट मारें तो हमें प्रबल ध्वनि सुनाइर् देगी। क्या आप इसका कारण बता सकते हैं? प्रबल ध्वनि अध्िक दूरी तक चल सकती है क्योंकियह अध्िक ऊजार् से संब( है। उत्पादक ड्डोत सेनिकलने के पश्चात् ध्वनि तरंग पैफल जाती है। ड्डोत से दूर जाने पर इसका आयाम तथा प्रबलता दोनों हीकम होते जाते हैं। चित्रा 12.10 में समान आवृिा कीप्रबल तथा मृदु ध्वनि की तरंग आकृतियाँ प्रदश्िार्त की गइर् हैं। चित्रा 12ण्9रू निम्न तारत्व की ध्वनि की आवृिा कम तथाउच्च तारत्व की ध्वनि की आवृिा अध्िक चित्रा 12ण्10रू मृदु ध्वनि का आयाम कम होता है तथा प्रबल होती है ध्वनि का आयाम अध्िक होता है ध्वनि की यह गुणता ;जपउइतमद्ध वह अभ्िालक्षण है जो हमें समान तारत्व तथा प्रबलता की दो ध्वनियोंमें अंतर करने में सहायता करता है। एकल आवृिाकी ध्वनि को टोन कहते हैं। अनेक आवृिायों के मिश्रण से उत्पन्न ध्वनि को स्वर ;दवजमद्ध कहते हैं और यह सुनने में सुखद होती है। शोर ;दवपेमद्ध कणर्पि्रय नहीं होता जबकि संगीत सुनने मे सुखद होता है । प्र श्न 1ण् तरंग का कौन - सा गुण निम्नलिख्िात को निधर्रित करता है? ;ंद्ध प्रबलता, ;इद्ध तारत्व। 2ण् अनुमान लगाइए कि निम्न में से किस ध्वनि का तारत्व अध्िक है?;ंद्ध गिटार ;इद्ध कार का हाॅनर्। तरंग के किसी बिंदु जैसे एक संपीडन या एक विरलन द्वारा एकांक समय में तय की गइर् दूरी तरंग वेग कहलाती है। हम जानते हैंदरूी वेगत्र समय 1 त्र त्र× ज्ज् यहाँλ ध्वनि की तरंगदैघ्यर् है। यह तरंग द्वारा एक आवतर् काल ;ज् द्ध में चली गइर् दूरी है। अतः अ त्र अथवा अ वेगत्र तरंगदैध्यर् × आवृिा किसी माध्यम के लिए समान भौतिक परिस्िथतियोंमें ध्वनि का वेग सभी आवृिायों के लिए लगभग स्िथर रहता है। उदाहरण 12ण्1 किसी ध्वनि तरंग की आवृिा 2 ाभ््र और उसकी तरंगदैघ्यर् 35 बउ है। यह 1ण्5 ाउ दूरी चलने में कितना समय लेगी? 186 हलरू दिया हुआ है, आवृिा, ν त्र 2 ाभ््र त्र 2000 भ््र तरंगदैघ्यर्, λत्र 35 बउ त्र 0ण्35 उ हम जानते हैं, तरंग वेग अ = तरंगदैघ्यर् आवृिात्र 0ण्35 उ × 2000 भ््र त्र 700 उध्े तरंग को 1ण्5 ाउ दूरी तय करने में लगने वाला समय ध्वनि 1ण्5 ाउ तय करने में 2.1 े समय लेगी। प्र श्न 1ण् किसी ध्वनि तरंग की तरंगदैघ्यर्, आवृिा, आवतर् काल तथा आयाम से क्या अभ्िाप्राय है? 2ण् किसी ध्वनि तरंग की तरंगदैघ्यर् तथा आवृिा उसके वेग से किस प्रकार संबंध्ित है? 3ण् किसी दिए हुए माध्यम में एक ध्वनि तरंगकी आवृिा 220 भ््र तथा वेग 440 उध्े है। इस तरंग की तरंगदैघ्यर् की गणना कीजिए। 4ण् किसी ध्वनिड्डोत से 450 उ दूरी पर बैठा हुआ कोइर् मनुष्य 500 भ््र की ध्वनि सुनताहै। ड्डोत से मनुष्य के पास तक पहुँचने वाले दो क्रमागत संपीडनों में कितना समय अंतराल होगा? किसी एकांक क्षेत्रापफल से एक सेवंफड में गुजरनेवाली ध्वनि ऊजार् को ध्वनि की तीव्रता कहते हैं। यद्यपि हम कभी - कभी ‘प्रबलता’ तथा ‘तीव्रता’ शब्दों का पयार्य के रूप में उपयोग करते हैं लेकिन इनका अथर् एक ही नहीं है। प्रबलता ध्वनि के लिए कानों की विज्ञान संवेदनशीलता की माप है। यद्यपि दो ध्वनियाँ समान तीव्रता की हो सकती हैं पिफर भी हम एक को दूसरे की अपेक्षा अध्िक प्रबल ध्वनि के रूप में सुन सकते हैं क्योंकि हमारे कान इसके लिए अध्िक संवेदनशील हैं। प्र श्न 1ण् ध्वनि की प्रबलता तथा तीव्रता में अंतर बताइए। 12ण्2ण्4 विभ्िान्न माध्यमों में ध्वनि की चाल किसी माध्यम में ध्वनि एक निश्िचत चाल से संचरित होती है। किसी पटाखे या तडि़त के गजर्न की ध्वनि प्रकाश की चमक दिखाइर् देने के वुफछ देर बाद सुनाइर् देती है। इसलिए हम यह निष्कषर् निकाल सकते हैं कि ध्वनि की चाल प्रकाश की चाल से बहुत कम है। ध्वनि की चाल उस माध्यम के गुणों पर निभर्र करती है जिसमें ये संचरित होती है। आप इस संबंध् को अपनी उच्च कक्षाओं में सीखेंगे। किसी माध्यम में ध्वनि की चाल माध्यम के ताप पर निभर्र करती है। जब हम ठोस से गैसीय अवस्था की ओर जाते हैं तो ध्वनि की चाल कम होती जाती है। किसी भी माध्यम में ताप बढ़ाने पर ध्वनि की चाल भी बढ़ती है। उदाहरण के लिए वायु में ध्वनि की चाल 0°ब् पर 331 उ ेदृ1 तथा 22 °ब् पर 344 उ ेदृ1 है। सारणी 12.1 में विभ्िान्न माध्यमों में एक विशेष ताप पर ध्वनि की चाल को दशार्या गया है। ;इसे आपको याद रखने की आवश्यकता नहीं है।द्ध ध्वनि बूमरू जब कोइर् पिंड ध्वनि की चाल से अध्िक तेशी से गति करता है तब उसे पराध्वनिक चाल से चलता हुआ कहा जाता है। गोलियाँ, जेट - वायुयान आदि प्रायः पराध्वनिक चाल से चलतेहैं। जब ध्वनि उत्पादक ड्डोत ध्वनि की चाल से अध्िक तेशी से गति करती है तो ये वायु में प्रघाती तरंगें उत्पन्न करते हैं। इन प्रघाती तरंगों में बहुतअध्िक ऊजार् होती है। इस प्रकार की प्रघाती तरंगों से संब( वायुदाब में परिवतर्न से एक बहुत तेश और प्रबल ध्वनि उत्पन्न होती है जिसे ध्वनि बूम कहते हैं। पराध्वनिक वायुयान से उत्पन्न इस ध्वनिबूम में इतनी मात्रा में ऊजार् होती है कि यह ख्िाड़कियों के शीशों को तोड़ सकती है और यहाँ तक कि भवनों को भी क्षति पहुँचा सकती है। प्रश्न 1ण् वायु, जल या लोहे में से किस माध्यम में ध्वनि सबसे तेज़्ा चलती है? 12ण्3 ध्वनि का परावतर्न किसी ठोस या द्रव से टकराकर ध्वनि उसी प्रकार वापस लौटती है जैसे कोइर् रबड़ की गेंद किसी दीवार से टकराकर वापस आती है। प्रकाश की भाँति ध्वनि भी किसी ठोस या द्रव की सतह से परावतिर्त होती है तथा परावतर्न के उन्हीं नियमों का पालन करती है जिनका अध्ययन आप अपनी पिछली कक्षाओं में कर चुके हैं। परावतर्क सतह पर खींचे गए अभ्िालंब तथाध्वनि के आपतन होने की दिशा तथा परावतर्न होने की दिशा के बीच बने कोण आपस में बराबर होते हैं और ये तीनों दिशाएँ एक ही तल में होती हैं। ध्वनि तरंगों के परावतर्न के लिए बड़े आकार के अवरोध्क की आवश्यकता होती है जो चाहे पालिश किए हुए हों या खुरदरे। ियाकलापऋऋऋऋऋऋऋऋऋऋऋऋऋऋ12ण्5 ऽ चित्रा 12.11 की भाँति दो एक जैसे पाइप लीजिए। आप चाटर् पेपर की सहायता से ऐसे पाइप बना सकते हैं। चित्रा 12ण्11रू ध्वनि का परावतर्न ऽ पाइपों की लंबाइर् पयार्प्त होनी चाहिए ;चाटर् पेपर की लंबाइर् के बराबरद्ध। ऽ इन्हें दीवार के समीप किसी मेज़ पर व्यवस्िथत कीजिए। एक पाइप के खुले सिरे के पास एक घड़ी रख्िाए तथा दूसरे पाइप की ओर से घड़ी की ध्वनि सुनने की कोश्िाश कीजिए। ऽ दोनों पाइपों की स्िथति को इस प्रकार समायोजित कीजिए जिससे कि आपको घड़ी की ध्वनि अच्छी प्रकार स्पष्ट रूप से सुनाइर् देने लगे। ऽ इन पाइपों तथा अभ्िालंब के बीच के कोणों को मापिए तथा इनके बीच के संबंध् को देख्िाए। ऽ दाईं ओर के पाइप को ऊध्वार्ध्र दिशा में थोड़ीसी ऊँचाइर् तक उठाइए और देख्िाए क्या होता है? 12ण्3ण्1 प्रतिध्वनि किसी उचित परावतर्क वस्तु जैसे किसी इमारत अथवा पहाड़ के निकट यदि आप जोर से चिल्लाएँ या ताली बजाएँ तो आपको वुफछ समय पश्चात् वही ध्वनि पिफर से सुनाइर् देती है। आपको सुनाइर् देने वाली इस ध्वनि को प्रतिध्वनि कहते हैं। हमारे मस्ितष्क में ध्वनि की संवेदना लगभग 0ण्1ेतक बनी रहती है। स्पष्ट प्रतिध्वनि सुनने के लिए मूल ध्वनि तथा परावतिर्त ध्वनि के बीच कम से कम 0ण्1े का समय अंतराल अवश्य होना चाहिए। यदि हम किसी दिए हुए ताप, जैसे 22°ब् पर ध्वनि की चाल 344 उध्े मान लें तो ध्वनि को अवरोध्क तक जाने तथा परावतर्न के पश्चात् वापस श्रोता तक 0ण्1े के पश्चात् पहुँचना चाहिए। अतः श्रोता से परावतर्क सतह तक जाने तथा वापस आने में ध्वनि द्वारा तय की गइर् वुफल दूरी कम से कम ;344 उध्ेद्ध × 0ण्1 े त्र 34ण्4 उ होनी चाहिए। अतः स्पष्ट प्रतिध्वनि सुनने के लिए अवरोध्क की ध्वनिड्डोत से न्यूनतम दूरी ध्वनि द्वारा तय की गइर् वुफल दरीूकी आध्ी अथार्त् 17ण्2 उ अवश्य होनी चाहिए। यह दूरी वायु के ताप के साथ बदल जाती है क्योंकि ताप के साथ ध्वनि के वेग में भी परिवतर्न हो जाता है। ध्वनि के बारंबार परावतर्न के कारण हमें एक से अिाक प्रतिध्वनियाँ भी सुनाइर् दे सकती हैं। बादलों के गड़गड़ाहट की ध्वनि कइर् परावतर्क पृष्ठों जैसे बादलों तथा भूमि से बारंबार परावतर्न के पफलस्वरूप उत्पन्न होती है। 12ण्3ण्2 अनुरणन किसी बड़े हाॅल में उत्पन्न होने वाली ध्वनि दीवारों से बारंबार परावतर्न के कारण कापफी समय तक बनी रहती है जब तक कि यह इतनी कम न हो जाए कि यह सुनाइर् ही न पड़े। यह बारंबार परावतर्न जिसके कारण ध्वनि - निबर्ंध् होता है, अनुरणन कहलाता है। किसी सभा भवन या बड़े हाॅल में अत्यिाक अनुरणन अत्यंत अवांछनीय है। अनुरणन को कम करने के लिए सभा भवन की छतों तथा दीवारों पर ध्वनि अवशोषक पदाथो± जैसे संपीडित पफाइबर बोडर्, खुरदरे प्लास्टर अथवा पदेर् लगे होते हैं। सीटों के पदाथो± का चुनाव इनके ध्वनि अवशोषक गुणों के आधर पर भी किया जाता है। उदाहरण 12ण्2 एक मनुष्य किसी खड़ी चट्टðान के पास ताली बजाता है और उसकी प्रतिध्वनि 5 े के पश्चात्् सुनाइर् देती है। यदि ध्वनि की चाल 346 उ े.1 ली जाए, तो चट्टðान तथा मनुष्य के बीच की दूरी कितनी होगी? हलरू ध्वनि की चाल, अ त्र 346 उ ेदृ1 प्रतिध्वनि सुनने में लिया गया समय ज त्र 5 े ध्वनि द्वारा चली गइर् दूरी त्र अ × ज त्र 346 उ ेदृ1 × 5 े त्र 1730 उ 5 े में ध्वनि ने चट्टðान तथा मनुष्य के बीच की दोगनी दूरी तय की। अतएव चट्टðान तथा मनुष्य के बीच की दूरी त्र 1730 उध्2 त्र 865 उण् प्रश्न 1ण् कोइर् प्रतिध्वनि3 े पश्चात् सुनाइर् देती है। यदि ध्वनि की चाल 342 उे.1 हो तो ड्डोत तथा परावतर्क सतह के बीच कितनी दूरी होगी? 12ण्3ण्3 ध्वनि के बहुल परावतर्न के उपयोग ़1ण् मेगापफोन या लाउडस्पीकर, हाॅनर्, तूयर् तथा शहनाइर् जैसे वाद्य यंत्रा, सभी इस प्रकार बनाए जाते हैं कि ध्वनि सभी दिशाओं में पैफले बिना केवल एक विशेष दिशा में ही जाती है, जैसा कि चित्रा 12.12 में दशार्या गया है। ़मेगापफोन हाॅनर् चित्रा 12ण्12रू मेगाप़फोन हाॅनर् इन यंत्रों में एक नली का आगे का खुला भागशंक्वाकार होता है। यह ड्डोत से उत्पन्न होने वाली ध्वनि तरंगों को बार - बार परावतिर्त करके श्रोताओं की ओर आगे की दिशा में भेज देता है। 2ण् स्टेथोस्कोप एक चिकित्सा यंत्रा है जो शरीर के अंदर, मुख्यतः हृदय तथा पेफपफड़ों में, उत्पन्न होने वाली ध्वनि को सुनने में काम आता है। स्टेथोस्कोप में रोगी के हृदय की ध्ड़कन की ध्वनि, बार - बार परावतर्न के कारण डाॅक्टर के कानों तक पहुँचती है ;चित्रा 12.13द्ध। चित्रा 12ण्13रूस्टेथोस्कोप 3ण् कंसटर् हाॅल, सम्मेलन कक्षों तथा सिनेमा हाॅल की छतें वक्राकार बनाइर् जाती हैं जिससे कि परावतर्न के पश्चात् ध्वनि हाॅल के सभी भागों में पहुँच जाए, जैसा कि चित्रा 12.14 में दशार्या गया है। कभी - कभी वक्राकार ध्वनि - पट्टðों को मंच के पीछे रख दिया जाता है जिससे कि ध्वनि, ध्वनि - पटð से परावतर्न के पश्चात् समान रूप से पूरे हाॅल में पैफल जाए ;चित्रा 12.15द्ध। चित्रा12ण्14रूसम्मेलन कक्ष की वक्राकार छत चित्रा 12ण्15रू बड़े कहाॅल में उपयोग किए जाने वाला ध्वनि - पट ð प्रश्न 1ण् कंसटर् हाॅल की छतें वक्राकार क्यों होती हैं? 12ण्4 श्रव्यता का परिसर हम सभी आवृिा की ध्वनियों को नहीं सुन सकते। मनुष्यों में ध्वनि की श्रव्यता का परिसर लगभग 20 भ््र से 20ए000 भ््र ;वदम भ््र त्र वदम बलबसमध्ेद्ध तक होता है।पाँच वषर् से कम आयु के बच्चे तथावुफछ जंतु जैसे वुफत्ते 25 ाभ््र तक की ध्वनि सुन सकते हैं। ज्यों - ज्यों व्यक्ितयों की आयु बढ़ती जाती हैउनके कान उच्च - आवृिायों के लिए कम सुग्राही होते जाते हैं। 20 भ््र से कम आवृिा की ध्वनियों को अवश्रव्य ध्वनि कहते हैं। यदि हम अवश्रव्य ध्वनि को सुन पाते तो हम किसी लोलक के वंफपनों को उसी प्रकार सुन पाते जैसे कि हम किसी मक्खी पंखों के वंफपनों को सुन पाते हैं। राइनोसिरस ;गैंडाद्ध 5 भ््र तक की आवृिा की अवश्रव्य ध्वनि का उपयोग करके संपवर्फ स्थापित करता है। ह्नेेल तथा हाथी अवश्रव्य ध्वनि परिसर की ध्वनियाँ उत्पन्न करते हैं। यह देखा गया है कि वुफछ जंतु भूवंफप से पहले परेशान हो जाते हैं। भूवंफप मुख्य प्रघाती तरंगांे से पहले निम्न आवृिा की अवश्रव्य ध्वनि उत्पन्न करते हैं, जो संभवतः जंतुओं को सावधन कर देती है। 20 ाभ््र से अध्िकआवृिा की ध्वनियों को पराश्रव्य ध्वनि या पराध्वनि कहते हैं। डाॅलप्िाफन, चमगादड़ और पाॅरपाॅइज पराध्वनि़उत्पन्न करते हैं। वुफछ प्रजाति के शलभों ;उवजीेद्ध के श्रवण यंत्रा अत्यंत सुग्राही होते हैं। ये शलभ चमगादड़ोंद्वारा उत्पन्न उच्च आवृिा की चींचीं की ध्वनि को सुन सकते हैं। उन्हें अपने आस - पास उड़ते हुए चमगादड़ के बारे में जानकारी मिल जाती है और इस प्रकार स्वयं को पकड़े जाने से बचा पाते हैं। चूहे भी पराध्वनि उत्पन्न करके वुफछ खेल खेलते हैं। श्रवण सहायक युक्ितः जिन लोगों को कम सुनाइर् देता है, उन्हें इस यंत्रा की आवश्यकता होती है। यह बैट्री से चलने वाली एक इलेक्ट्राॅनिक युक्ित है। इसमें एक छोटा - सा माइक्रोपफोन, एक एंप्लीपफायऱव स्पीकर होता है। जब ध्वनि माइक्रोप़्ाफोन पर पड़ती है तो वह ध्वनि तरंगों को विद्युत संकेतों में परिव£तत कर देता है। एंप्लीपफायर इन विद्युत संकेतों को प्रव£ध्त कर देता है। ये संकेत स्पीकर द्वारा ध्वनि की तरंगों में परिव£तत कर दिए जाते हैं। ये ध्वनि तरंगें कान के डायप्रफाम पर आपतित होती हैं तथा व्यक्ित को ध्वनि साप़्ाफ सुनाइर् देती है। श्न 1ण् सामान्य मनुष्य के कानों के लिए श्रव्यता परास क्या है? 2ण् निम्न से संबंध्ित आवृिायों का परास क्या है?प्र ;ंद्ध अवश्रव्य ध्वनि ;इद्ध पराध्वनि 12ण्5 पराध्वनि के अनुप्रयोग पराध्वनियाँ उच्च आवृिा की तरंगें हैं। पराध्वनियाँ अवरोधों की उपस्िथति में भी एक निश्िचत पथ पर गमन कर सकती हैं। उद्योगों तथा चिकित्सा के क्षेत्रा में पराध्वनियों का विस्तृत रूप से उपयोग किया जाता है। ऽ पराध्वनि प्रायः उन भागों को साप़फ करने में उपयोग की जाती है जिन तक पहँुचना कठिन होता हैऋ जैसेμसपिर्लाकार नली, विषम आकार के पुजेर्, इलेक्ट्राॅनिक अवयव आदि। जिन वस्तुओं को साप़फ करना होता है उन्हें साप़फ करने वाले माजर्न विलयन में रखते हैं और इस विलयन में पराध्वनि तरंगें भेजी जाती हैं।उच्च आवृिा के कारण, ध्ूल, चिकनाइर् तथा गंदगी के कण अलग होकर नीचे गिर जाते हैं। इस प्रकार वस्तु पूणर्तया साप़फ हो जाती है। ऽ पराध्वनि का उपयोग धतु के ब्लाॅकों ;पिंडोंद्ध में दरारों तथा अन्य दोषों का पता लगाने के लिए किया जा सकता है। धत्िवक घटकों को प्रायः बड़े - बड़े भवनों, पुलों, मशीनों तथा वैज्ञानिक उपकरणों को बनाने के लिए उपयोग में लाया जाता है। धतु के ब्लाॅकों में विद्यमान दरार या छिद्र जो बाहर से दिखाइर् नहीं देते, भवन या पुल की संरचना की मशबूती को कम कर देते हैं। पराध्वनि तरंगें धतु के ब्लाॅक से गुशारी ;प्रेष्िात कीद्ध जाती हैं और प्रेष्िात तरंगों का पता लगाने के लिए संसूचकों का उपयोग किया जाता है। यदि थोड़ा - सा भी दोष होता है, तो पराध्वनि तरंगें परावतिर्त हो जाती हैं जो दोष की उपस्िथति को दशार्ती है ;चित्रा 12.16द्ध। चित्रा 12ण्16रूपराध्वनि धतु के ब्लाॅक में दोषयुक्त स्थान से परावतिर्त हो जाती है साधरण ध्वनि जिसकी तरंगदैघ्यर् अध्िक होती है, दोषयुक्त स्थान के कोणों से मुड़कर संसूचक तक पहुँच जाती है, इसलिए इस ध्वनि का उपयोग इस कायर् के लिए नहीं किया जा सकता। ऽ पराध्वनि तरंगों को हृदय के विभ्िान्न भागों से परावतिर्त करा कर हृदय का प्रतिबिंब बनाया जाता है। इस तकनीक को फ्इकोकाडिर्योग्राप़फीय् ;म्ब्ळद्धकहा जाता है। ऽ पराध्वनि संसूचक एक ऐसा यंत्रा है जो पराध्वनि तरंगों का उपयोग करके मानव शरीर के आंतरिक अंगों का प्रतिबिंब प्राप्त करने के लिए काम में लाया जाता है। इस संसूचक सेरोगी के अंगोंऋ जैसेμयकृत, पित्ताशय, गभार्शय, गुदेर् आदि का प्रतिबिंब प्राप्त किया जा सकता है। यह संसूचक को शरीर की असमान्यताएँ,जैसे पित्ताशय तथा गुदेर् में पथरी तथा विभ्िान्न अंगों में अबुर्द ;ट्यूमरद्ध का पता लगाने में सहायता करता है। इस तकनीक में पराध्वनितरंगें शरीर के ऊतकों में गमन करती हैं तथा उस स्थान से परावतिर्त हो जाती हैं जहाँऊतक के घनत्व में परिवतर्न होता है। इसके पश्चात् इन तरंगों को विद्युत संकेतों में परिवतिर्त किया जाता है जिससे कि उस अंग का प्रतिबिंब बना लिया जाए। इन प्रतिबिंबों को माॅनीटर पर प्रदश्िार्त किया जाता है या पिफल्म पर मुदि्रत कर लिया जाता है। इस तकनीक को अल्ट्रासोनोग्राप़फी कहते हैं। अल्ट्रासोनोग्राप़फी का उपयोग गभर् काल में भ्रूण की जाँच तथा उसके जन्मजात दोषों तथा उसकी वृि की अनियमितताओं का पता लगाने में किया जाता है। ऽ पराध्वनि का उपयोग गुदेर् की छोटी पथरी को बारीक कणों में तोड़ने के लिए भी किया जा सकता है। ये कण बाद में मूत्रा के साथ बाहर निकल जाते हैं। 12ण्5ण्1सोनार सोनार ;ैव्छ।त्द्ध शब्द ैव्नदक छंअपहंजपवद ।दक त्ंदहपदह से बना है। सोनार एक ऐसी युक्ित है जिसमें जल में स्िथत पिंडों की दूरी, दिशा तथा चाल मापने के लिए पराध्वनि तरंगों का उपयोग किया जाता है। सोनार वैफसे कायर् करता है? सोनार में एक प्रेष्िात्रा तथा एक संसूचक होता है और इसे किसी नाव या जहाज में चित्रा 12.17 की भाँति लगाया जाता है। चित्रा 12ण्17रू प्रेष्िात्रा द्वारा प्रेष्िात की गइर् तथा संसूचक द्वारा ग्रहण की गइर् पराध्वनि प्रेष्िात्रा पराध्वनि तरंगें उत्पन्न तथा प्रेष्िात करता है। ये तरंगें जल में चलती हैं तथा समुद्र तल में पिंड से टकराने के पश्चात् परावतिर्त होकर संसूचक द्वारा ग्रहण कर ली जाती हंै। संसूचक पराध्वनि तरंगों को विद्युत संकेतों में बदल देता है जिनकी उचित रूप से व्याख्या कर ली जाती है। जल में ध्वनि की चाल तथा पराध्वनि के प्रेषण तथा अभ्िाग्रहण के समय अंतराल को ज्ञात करके उस पिंड की दूरी की गणना की जा सकती है जिससे ध्वनि तरंग परावतिर्त हुइर् है। मान लीजिए पराध्वनि संकेत के प्रेषण तथा अभ्िाग्रहण का समय अंतराल ष्जष् है तथा समुद्री जल में ध्वनि की चाल ष्अष् है। तब सतह से पिंड की दूरी 2 ष्कष् होगी 2क त्र अ × ज उपरोक्त विध्ि को प्रतिध्वनिक - परास कहते हैं। सोनार की तकनीक का उपयोग समुद्र की गहराइर् ज्ञात करने तथा जल के अंदर स्िथत चट्टðानों, घाटियों, पनडुब्िबयों, हिम शैल ;प्लावी बप़र्फद्ध, डूबे हुए जहाज आदि की जानकारी प्राप्त करने के लिए किया जाता है। उदाहरण 12ण्3 एक जहाज पराध्वनि उत्सजिर्त करता है जो समुद्र तल से परावतिर्त होकर 3ण्42 े के पश्चात् संसूचित की जाती है। यदि समुद्र जल में पराध्वनि की चाल 1531 उध्े हो, तो समुद्र तल से जहाज की कितनी दूरी होगी? हलरू प्रेषण तथा संसूचन के बीच लगा समय ज त्र 3ण्42 ेण् समुद्र जल में पराध्वनि की चाल अ त्र 1531 उध्े पराध्वनि द्वारा चली गइर् दूरी त्र 2क जहाँ क = समुद्र की गहराइर् 2क त्र ध्वनि की चाल समय त्र 1531 उध्े × 3ण्42 े त्र 5236 उ क त्र 5236 उ ध्2 त्र 2618 उ अतः जहाज से समुद्र तल की दूरी 2618 उ या 2ण्62 ाउ है।प्रश्न 1ण् एक पनडुब्बी सोनार स्पंद उत्सजिर्त करती है, जो पानी के अंदर एक खड़ी चट्टðान से टकराकर 1ण्02 े के पश्चात् वापस लौटता है। यदि खारे पानी में ध्वनि की चाल 1531 उध्े हो, तो चट्टðान की दूरी ज्ञात कीजिए। जैसा कि पहले वणर्न किया गया है, चमगादड़ गहन अंधकार में अपने भोजन को खोजने के लिए उड़ते समय पराध्वनि तरंगें उत्सजिर्त करता है तथा परावतर्न के पश्चात् इनका संसूचन करता है। चमगादड़ द्वारा उत्पन्न उच्च तारत्व के पराध्वनि स्पंद अवरोधें या कीटों से परावतिर्त होकर चमगादड़ के कानों तक पहुँचते हैं ;चित्रा 12.18द्ध। इन परावतिर्त स्पंदों कीप्रकृति से चमगादड़ को पता चलता है कि अवरोध् या कीट कहाँ पर है और यह किस प्रकार का है। पाॅरपाॅइज मछलियाँ भी अंध्ेरे में संचालन व भोजन की खोश में पराध्वनि का उपयोग करती हैं। चित्रा 12ण्18रू चमगादड़ द्वारा पराध्वनि उत्सजिर्त होती है तथा अवरोध् या कीटों द्वारा परावतिर्त होती है 12ण्6 मानव कणर् की संरचना हम वैफसे सुनते हैं? हम एक अतिसंवेदी युक्ित जिसे कान ;कणर्द्ध कहते हैं, की सहायता से सुन पाते हैं।यह श्रवणीय आवृिायों द्वारा वायु में होने वाले दाब परिवतर्नों को विद्युत संकेतों में बदलता है जो श्रवण तंत्रिाका से होते हुए मस्ितष्क तक पहुँचते हैं। मानव के कान द्वारा सुनने की प्रिया के पक्ष के बारे में हम यहाँ चचार् करेंगे। चित्रा 12ण्19रू मानव कान के श्रवण भाग बाहरी कान ‘कणर् पल्लव’ कहलाता है। यह परिवेश से ध्वनि को एकत्रिात करता है। एकत्रिात ध्वनि श्रवण नलिका से गुजरती है। श्रवण नलिका के आपने क्या सीखा सिरे पर एक पतली झिल्ली होती है जिसे कणर् पटहया कणर् पटह झिल्ली कहते हैं। जब माध्यम के संपीडन कणर् पटह तक पहुँचते हैं तो झिल्ली के बाहर की ओर लगने वाला दाब बढ़ जाता है और यह कणर् पटह को अंदर की ओर दबाता है। इसी प्रकार, विरलन के पहुँचने पर कणर् पटह बाहर की ओर गति करता है। इस प्रकार कणर् पटह वंफपन करता है। मध्य कणर् मंे विद्यमान तीन हियाँóख्;मुग्दरक, निहाइर् तथा वलयक ;स्िटरपद्ध, इन कंपनों को कइर् गुना बढ़ा देती हैं। मध्य कणर् ध्वनि तरंगों से मिलने वाले इन दाब परिवतर्नों को आंतरिक कणर् तक संचरित कर देता है। आंतरिक कणर् में कणार्वतर् ;ब्वबीसमंद्ध द्वारा दाब परिवतर्नों को विद्युत संकेतों में परिवतिर्त कर दिया जाता है। इन विद्युत संकेतों को श्रवण तंत्रिाका द्वारा मस्ितष्क तक भेज दिया जाता है और मस्ितष्क इनकी ध्वनि के रूप में व्याख्या करता है। ऽ ध्वनि विभ्िान्न वस्तुओं के वंफपन करने के कारण उत्पन्न होती है। ऽ ध्वनि किसी द्रव्यात्मक माध्यम में अनुदैघ्यर् तरंगों के रूप में संचरित होती है। ऽ ध्वनि माध्यम में क्रमागत संपीडनों तथा विरलनों के रूप में संचरित होती है। ऽ ध्वनि संचरण में, माध्यम के कण आगे नहीं बढ़ते, केवल विक्षोभ ही संचरित होता है। ऽ ध्वनि निवार्त में संचरित नहीं हो सकती। ऽ घनत्व के अध्िकतम मान से न्यूनतम मान और पुनः अध्िकतम मान के परिवतर्न से एक दोलन पूरा होता है। ऽ वह न्यूनतम दूरी जिस पर किसी माध्यम का घनत्व या दाब आवतीर् रूप मेंअपने मान की पुनरावृिा करता है, ध्वनि की तरंगदैघ्यर् ;λद्ध कहलाती है। ऽ तरंग द्वारा माध्यम के घनत्व के एक संपूणर् दोलन मंे लिए गए समय को आवतर् काल ;ज्द्ध कहते हैं। ऽ एकांक समय में होने वाले दोलनों की वुफल संख्या को आवृिा ;νद्ध कहते हैं ज् 1 ण् ऽ ध्वनि का वेग ;अद्धए आवृिा ;νद्ध तथा तरंगदैघ्यर् ;λद्ध में संबंध् है, अ त्र λν ऽ ध्वनि की चाल मुख्यतः संचरित होने वाले माध्यम की प्रकृति तथा ताप पर निभर्र होती है। ऽ ध्वनि के परावतर्न के नियम के अनुसार, ध्वनि के आपतन होने की दिशा तथा परावतर्न होने की दिशा, परावतर्क सतह पर खींचे गए अभ्िालंब से समान कोण बनाते हैं और ये तीनों एक ही तल में होते हैं। ऽ स्पष्ट प्रतिध्वनि सुनने के लिए मूल ध्वनि तथा परावतिर्त ध्वनि के बीच कम से कम0ण्1 े का समय अंतराल अवश्य होना चाहिए। ऽ किसी सभागार में ध्वनि - निब±ध् बारंबार परावतर्नों के कारण होता है और इसे अनुरणन कहते हैं। ऽ ध्वनि के अभ्िालक्षण जैसे तारत्व, प्रबलता तथा गुणताऋ संगत तरंगों के गुणों द्वारा निधर्रित होते हैं। ऽ प्रबलता ध्वनि की तीव्रता के लिए कानों की शारीरिक अनुिया है। ऽ किसी एकांक क्षेत्रापफल से एक सेवंफड में गुजरने वाली ध्वनि ऊजार् को ध्वनि की तीव्रता कहते हैं। ऽ मानवों में ध्वनि की श्रव्यता की आवृिायों का औसत परास 20 भ््र से 20 ाभ््र तक है। ऽ श्रव्यता के परास से कम आवृिायों की ध्वनि को ‘अवश्रव्य’ ध्वनि तथाश्रव्यता के परास से अध्िक आवृिा की ध्वनियों को ‘पराध्वनि’ कहते हैं। ऽ पराध्वनि के चिकित्सा तथा प्रौद्योगिक क्षेत्रों में अनेक उपयोग हैं। ऽ सोनार की तकनीक का उपयोग समुद्र की गहराइर् ज्ञात करने तथा जल के नीचे छिपी चट्टðानों, घाटियों, पनडुब्िबयों, हिम शैल, डूबे हुए जहाजों, आदि का पता लगाने के लिए किया जाता है। अभ्यास 1ण् ध्वनि क्या है और यह वैफसे उत्पन्न होती है? 2ण् एक चित्रा की सहायता से वणर्न कीजिए कि ध्वनि के ड्डोत के निकट वायु में संपीडन तथा विरलन वैफसे उत्पन्न होते हैं। 3ण् किस प्रयोग से यह दशार्या जा सकता है कि ध्वनि संचरण के लिए एक द्रव्यात्मक माध्यम की आवश्यकता होती है। 4ण् ध्वनि तरंगों की प्रकृति अनुदैघ्यर् क्यों है? 5ण् ध्वनि का कौन - सा अभ्िालक्षण किसी अन्य अंध्ेरे कमरे में बैठे आपके मित्रा की आवाज पहचानने में आपकी सहायता करता है? 6ण् तडि़त की चमक तथा गजर्न साथ - साथ उत्पन्न होते हैं। लेकिन चमक दिखाइर् देने के वुफछ सेवंफड पश्चात् गजर्न सुनाइर् देती है। ऐसा क्यों होता है? 7ण् किसी व्यक्ित का औसत श्रव्य परास 20 भ््र से 20 ाभ््र है। इन दो आवृिायों के लिए ध्वनि तरंगों की तरंगदैघ्यर् ज्ञात कीजिए। वायु में ध्वनि का वेग 344 उ ेदृ1 लीजिए। 8ण् दो बालक किसी ऐलुमिनियम पाइप के दो सिरों पर हैं। एक बालक पाइप के एक सिरे पर पत्थर से आघात करता है। दूसरे सिरे पर स्िथत बालक तक वायु तथा ऐलुमिनियम से होकर जाने वाली ध्वनि तरंगों द्वारा लिए गए समय का अनुपात ज्ञात कीजिए। 9ण् किसी ध्वनि ड्डोत की आवृिा 100 भ््र है। एक मिनट में यह कितनी बार कंपन करेगा? 10ण् क्या ध्वनि परावतर्न के उन्हीं नियमों का पालन करती है जिनका कि प्रकाश की तंरगें करती हैं? इन नियमों को बताइए। 11ण् ध्वनि का एक स्रोत किसी परावतर्क सतह के सामने रखने पर उसके द्वारा प्रदत्त ध्वनि तरंग की प्रतिध्वनि सुनाइर् देती है। यदि स्रोत तथा परावतर्क सतह की दूरी स्िथर रहे तो किस दिन प्रतिध्वनि अध्िक शीघ्र सुनाइर् देगी - ;पद्ध जिस दिन तापमान अध्िक हो? ;पपद्ध जिस दिन तापमान कम हो? 12ण् ध्वनि तरंगों के परावतर्न के दो व्यावहारिक उपयोग लिख्िाए। 13ण् 500 मीटर ऊँची किसी मीनार की चोटी से एक पत्थर मीनार के आधार पर स्िथत एक पानी के तालाब में गिराया जाता है। पानी में इसके गिरने की ध्वनि चोटी पर कब सुनाइर् देगी? ;ह त्र 10 उ े.2 तथा ध्वनि की चाल त्र 340 उ े.1द्ध 14ण् एक ध्वनि तरंग 339 उ े.1 की चाल से चलती है। यदि इसकी तरंगदैघ्यर् 1ण्5 बउ हो, तो तरंग की आवृिा कितनी होगी? क्या ये श्रव्य होंगी? 15ण् अनुरणन क्या है? इसे वैफसे कम किया जा सकता है? 16ण् ध्वनि की प्रबलता से क्या अभ्िाप्राय है? यह किन कारकों पर निभर्र करती है? 17ण् चमगादड़ अपना श्िाकार पकड़ने के लिए पराध्वनि का उपयोग किस प्रकार करता है? वणर्न कीजिए। 18ण् वस्तुओं को साप़फ करने के लिए पराध्वनि का उपयोग वैफसे करते हैं? 19ण् सोनार की कायर्विध्ि तथा उपयोगों का वणर्न कीजिए। 20ण् एक पनडुब्बी पर लगी एक सोनार युक्ित, संकेत भेजती है और उनकी प्रतिध्वनि 5 े पश्चात् ग्रहण करती है। यदि पनडुब्बी से वस्तु की दूरी 3625 उ हो तो ध्वनि की चाल की गणना कीजिए। 21ण् किसी धतु के ब्लाॅक में दोषों का पता लगाने के लिए पराध्वनि का उपयोग वैफसे किया जाता है वणर्न कीजिए। 22ण् मनुष्य का कान किस प्रकार कायर् करता है? विवेचना कीजिए।

>CHAP_12_HIND>
0965CH12





अध्याय 12

ध्वनि

(Sound)


हम प्रतिदिन विभिन्न स्रोतों; जैसे–मानवों, पक्षियों, घंटियों, मशीनों, वाहनों, टेलिविज़न, रेडियो आदि की ध्वनि सुनते हैं। ध्वनि ऊर्जा का एक रूप है जो हमारे कानों में श्रवण का संवेदन उत्पन्न करती है। ऊर्जा के अन्य रूप भी हैं; जैसे–यांत्रिक ऊर्जा, प्रकाश ऊर्जा, आदि। पिछले अध्यायों में आप यांत्रिक ऊर्जा का अध्ययन कर चुके हैं। आपको ऊर्जा संरक्षण के बारे में ज्ञात है। इसके अनुसार आप ऊर्जा को न तो उत्पन्न कर सकते हैं और न ही उसका विनाश कर सकते हैं। आप इसे केवल एक से दूसरे रूप में रूपांतरित कर सकते हैं। जब आप ताली बजाते हैं तो ध्वनि उत्पन्न होती है। क्या आप अपनी ऊर्जा का उपयोग किए बिना ध्वनि उत्पन्न कर सकत हैं? ध्वनि उत्पन्न करने के लिए आपने ऊर्जा के किस रूप का उपयोग किया? इस अध्याय में हम सीखेंगे कि ध्वनि कैसे उत्पन्न होती है और किसी माध्यम में यह किस प्रकार संचरित होकर हमारे कानों द्वारा ग्रहण की जाती है।

12.1 ध्वनि का उत्पादन


क्रियाकलाप ______________12.1

एक स्वरित्र द्विभुज लीजिए और इसकी किसी भुजा को एक रबड़ के पैड पर मार कर इसे कंपित कराइए।

इसे अपने कान के समीप लाइए।

क्या आप कोई ध्वनि सुन पाते हैं? कंपमान स्वरित्र द्विभुज की एक भुजा को अपनी अंगुली से स्पर्श कीजिए और अपने अनुभव को अपने मित्रों के साथ बाँटिए।

अब एक टेबल टेनिस या एक छोटी प्लास्टिक की गेंद को एक धागे की सहायता से किसी 
आधार से लटकाइए (एक लंबी सूई और धागा लीजिए। धागे के एक सिरे पर एक गाँठ लगाइए और सूई की सहायता से धागे को गेंद में पिरोइए)। पहले कंपन न करते हुए स्वरित्र द्विभुज की एक भुजा से गेंद को स्पर्श कीजिए। फिर कंपन करते हुए स्वरित्र द्विभुज की एक भुजा से गेंद को स्पर्श कीजिए (चित्र 12.1)।

• देखिए क्या होता है? अपने मित्रों के साथ विचार-विमर्श कीजिए और दोनों अवस्थाओं में अंतर की व्याख्या करने का प्रयत्न कीजिए।



चित्र 12.1: कंपमान स्वरित्र द्विभुज लटकी हुई टेबल टेनिस की गेंद को स्पर्श करते हुए


क्रियाकलाप ______________12.2

एक बीकर या गिलास को ऊपर तक पानी से भरिए। कंपमान स्वरित्र द्विभुज की एक भुजा को चित्र 12.2 में दर्शाए अनुसार पानी की सतह से स्पर्श कराइए।

अब चित्र 12.3 में दर्शाए अनुसार कंपमान स्वरित्र द्विभुज की दोनों भुजाओं को पानी में डुबोइए।

देखिए कि दोनों अवस्थाओं में क्या होता है?

अपने साथियों के साथ विचार-विमर्श कीजिए कि एेसा क्यों होता है?


चित्र 12.2: कंपमान स्वरित्र द्विभुज की एक भुजा पानी की सतह को स्पर्श करते हुए


चित्र 12.3: कंपमान स्वरित्र द्विभुज की दोनों भुजाएँ पानी में डूबी हुई


उपरोक्त क्रियाकलापों से आप क्या निष्कर्ष निकालते हैं? क्या आप किसी कंपमान वस्तु के बिना ध्वनि उत्पन्न कर सकते हैं?

अब तक वर्णित क्रियाकलापों में हमने स्वरित्र द्विभुज से आघात द्वारा ध्वनि उत्पन्न की। हम विभिन्न वस्तुओं में घर्षण द्वारा, खुरच कर, रगड़ कर, वायु फूँक कर या उनको हिलाकर ध्वनि उत्पन्न कर सकते हैं। इन क्रियाकलापों में हम क्या करते हैं? हम वस्तु को कंपमान करते हैं और ध्वनि उत्पन्न करते हैं। कंपन का अर्थ होता है किसी वस्तु का तेज़ी से बार-बार इधर-उधर गति करना। मनुष्यों में वाकध्वनि उनके वाक-तंतुओं के कंपित होने के कारण उत्पन्न होती है। जब कोई पक्षी अपने पंख को फड़फड़ाता है तो क्या आप कोई ध्वनि सुनते हैं? क्या आप जानते हैं कि मक्खी भिनभिनाने की ध्वनि कैसे उत्पन्न करती है? एक खींचे हुए रबड़ के छल्ले को बीच में से खींच कर छोड़ने पर यह कंपन करता है और ध्वनि उत्पन्न करता है। यदि आपने कभी एेसा नहीं किया है तो इसे कीजिए और तनी हुई रबड़ के छल्ले के कंपनों को देखिए।

क्रियाकलाप______________ 12.3

विभिन्न वाद्य यंत्रों की सूची बनाइए और अपने मित्रों के साथ विचार-विमर्श कीजिए कि ध्वनि उत्पन्न करने के लिए इन वाद्य यंत्रों का कौन-सा भाग कंपन करता है।


12.2 ध्वनि का संचरण

हम जानते हैं कि ध्वनि कंपन करती हुई वस्तुओं द्वारा उत्पन्न होती है। द्रव्य या पदार्थ जिससे होकर ध्वनि संचरित होती है, माध्यम कहलाता है। यह ठोस, द्रव या गैस हो सकता है। स्रोत से उत्पन्न होकर ध्वनि सुनने वाले तक किसी माध्यम से होकर पहुँचती है। जब कोई वस्तु कंपन करती है तो यह अपने चारों ओर विद्यमान माध्यम के कणों को कंपमान कर देती है। ये कण कंपमान वस्तु से हमारे कानों तक
स्वयं गति कर नहीं पहुँचते। सबसे पहले कंपमान वस्तु के संपर्क में रहने वाले माध्यम के कण अपनी संतुलित अवस्था से विस्थापित होते हैं। ये अपने समीप के कणों पर एक बल लगाते हैं। जिसके फलस्वरूप निकटवर्ती कण अपनी विरामावस्था से विस्थापित हो जाते हैं। निकटवर्ती कणों को विस्थापित करने के पश्चात्् प्रारंभिक कण अपनी मूल अवस्थाओं में वापस लौट आते हैं। माध्यम में यह प्रक्रिया तब तक चलती रहती है जब तक कि ध्वनि आपके कानों तक नहीं पहुँच जाती है। माध्यम में ध्वनि द्वारा उत्पन्न विक्षोभ (माध्यम के कण नहीं) माध्यम से होता हुआ संचरित होता है।

तरंग एक विक्षोभ है जो किसी माध्यम से होकर गति करता है और माध्यम के कण निकटवर्ती कणों में गति उत्पन्न कर देते हैं। ये कण इसी प्रकार की गति अन्य कणों में उत्पन्न करते हैं। माध्यम के कण स्वयं आगे नहीं बढ़ते, लेकिन विक्षोभ आगे बढ़ जाता है। किसी माध्यम में ध्वनि के संचरण के समय ठीक एेसा ही होता है। इसलिए ध्वनि को तरंग के रूप में जाना जा सकता है। ध्वनि तरंगें माध्यम के कणों की गति द्वारा अभिलक्षित की जाती हैं और यांत्रिक तरंगें कहलाती हैं।

क्या ध्वनि एक प्रकाश धब्बे को नृत्य करा सकती है?

एक टिन का डिब्बा लीजिए। इसके दोनों सिरों को काट कर एक खोखला बेलन बना लीजिए। एक गुब्बारा लीजिए। उसको इस प्रकार काटें कि उसकी एक झिल्ली बन जाए। इस झिल्ली को खींच कर डिब्बे के एक खुले सिरे के ऊपर तान दीजिए। गुब्बारे के चारों ओर एक रबड़ का छल्ला लपेट दीजिए। समतल दर्पण का एक छोटा टुकड़ा लीजिए। दर्पण के इस टुकड़े को गाेंद की सहायता से गुब्बारे से इस प्रकार चिपकाइए कि उसकी चमकदार सतह ऊपर की ओर हो। एक झिर्री (स्लिट) से आने वाले प्रकाश को दर्पण पर पड़ने दीजिए। परावर्तन के पश्चात्् प्रकाश का धब्बा दीवार पर पहुँचता है, जैसा कि चित्र 12.4 में दर्शाया गया है। डिब्बे के खुले भाग में सीधे ही बात कीजिए या चिल्लाइए और दीवार पर प्रकाश के धब्बे को नाचते हुए देखिए। अपने मित्रों से प्रकाश के धब्बे के नाचने के कारण के बारे में चर्चा कीजिए।


चित्र 12.4: प्रकाश स्रोत से आने वाला एक प्रकाश पुँज परावर्तक पर गिराया जाता है। परावर्तित प्रकाश दीवारपर गिर रहा है


ध्वनि के संचरण के लिए वायु सबसे अधिक सामान्य माध्यम है। जब कोई कंपमान वस्तु आगे की ओर कंपन करती है तो अपने सामने की वायु को धक्का देकर संपीडित करती है और इस प्रकार एक उच्च दाब का क्षेत्र उत्पन्न होता है। इस क्षेत्र को संपीडन (C) कहते हैं (चित्र 12.5)। यह संपीडन कंपमान वस्तु से दूर आगे की ओर गति करता है। जब कंपमान वस्तु पीछे की ओर कंपन करती है तो एक निम्न दाब का क्षेत्र उत्पन्न होता है जिसे विरलन (R) कहते हैं (चित्र 12.5)। जब वस्तु कंपन करती है अर्थात आगे और पीछे तेज़ी से गति करती है तो वायु में संपीडन और विरलन की एक श्रेणी बन जाती है। यही संपीडन और विरलन ध्वनि तरंग बनाते हैं जो माध्यम से होकर संचरित होती है। संपीडन उच्च दाब का क्षेत्र है और विरलन निम्न दाब का क्षेत्र है। दाब किसी माध्यम के दिए हुए आयतन में कणों की संख्या से संबंधित है। किसी माध्यम में कणों का अधिक घनत्व अधिक दाब को और कम घनत्व कम दाब को दर्शाता है। इस प्रकार ध्वनि का संचरण घनत्व परिवर्तन के संचरण के रूप में भी देखा जा सकता है।


चित्र 12.5: कंपमान वस्तु किसी माध्यम में संपीडन (C) तथा विरलन (R) की श्रेणी उत्पन्न करते हुए


प्रश्न

1. किसी माध्यम में ध्वनि द्वारा उत्पन्न विक्षोभ आपके कानों तक कैसे पहुँचता है?

12.2.1 ध्वनि संचरण के लिए माध्यम की आवश्यकता होती है।

ध्वनि एक यांत्रिक तरंग है और इसके संचरण के लिए किसी माध्यम; जैसे–वायु, जल, स्टील आदि की आवश्यकता होती है। यह निर्वात में होकर नहीं चल सकती। इसे निम्न प्रयोग द्वारा प्रदर्शित किया जा सकता है।

प्रयोग: एक विद्युत घंटी और एक काँच का वायुरुद्ध बेलजार लीजिए। विद्युत घंटी को बेलजार में लटकाइए। बेलजार को चित्र 12.6 की भाँति एक निर्वात पंप से जोड़िए। घंटी के स्विच को दबाने पर आप उसकी ध्वनि को सुन सकते हैं। अब निर्वात पंप को चलाइए। जब बेलजार की वायु धीरे-धीरे बाहर निकलती है, घंटी की ध्वनि धीमी हो जाती है यद्यपि उसमें पहले जैसी ही विद्युतधारा प्रवाहित हो रही है। कुछ समय पश्चात् जब बेलजार में बहुत कम वायु रह जाती है तब आपको बहुत धीमी ध्वनि सुनाई पड़ती है। यदि बेलजार की समस्त वायु निकाल दी जाए तो क्या होगा? क्या तब भी आप घंटी की ध्वनि सुन पाएँगे?


चित्र 12.6: निर्वात में ध्वनि का संचरण नहीं हो सकता यह दर्शाने के लिए बेलजार का प्रयोग

प्रश्न

1. आपके विद्यालय की घंटी, ध्वनि कैसे उत्पन्न करती है?

2. ध्वनि तरंगों को यांत्रिक तरंगें क्यों कहते हैं?

3. मान लीजिए आप अपने मित्र के साथ चंद्रमा पर गए हुए हैं। क्या आप अपने मित्र द्वारा उत्पन्न ध्वनि को सुन पाएँगे?


12.2.2 ध्वनि तरंगें अनुदैर्घ्य तरंगें हैं

क्रियाकलाप______________12.4

एक स्लिंकी लीजिए। अब स्लिंकी को चित्र 12.7 (a) में दर्शाए अनुसार खींचिए। अपने मित्र की ओर स्लिंकी को एक तीव्र झटका देें।

आप क्या देखते हैं? यदि आप अपने हाथ से स्लिंकी को लगातार आगे-पीछे बारी-बारी से धक्का देते और खींचते रहें, तो आप क्या देखेंगे?


चित्र 12.7: स्लिंकी में अनुदैर्घ्य तरंग

यदि आप स्लिंकी पर एक चिह्न लगा दें, तो आप देखेंगे कि स्लिंकी पर लगा चिह्न विक्षोभ के संचरण की दिशा के समांतर आगे-पीछे गति करता है।

उन क्षेत्रों को जहाँ स्लिंकी की कुंडलियाँ पास-पास आ जाती हैं संपीडन (C) और उन क्षेत्रों को जहाँ कुंडलियाँ दूर-दूर हो जाती हैं विरलन (R) कहते हैं। आप जानते हैं कि किसी माध्यम में ध्वनि संपीडनों तथा विरलनों के रूप में संचरित होती है। अब आप किसी स्लिंकी में विक्षोभ के संचरण तथा किसी माध्यम में विक्षोभ की तुलना कर सकते हैं। ये तरंगें अनुदैर्घ्य तरंगें कहलाती हैं। इन तरंगों में माध्यम के कणों का विस्थापन विक्षोभ के संचरण की दिशा के समांतर होता है। कण एक स्थान से दूसरे स्थान तक गति नहीं करते लेकिन अपनी विराम अवस्था से आगे-पीछे दोलन करते हैं। ठीक इसी प्रकार ध्वनि तरंगें संचरित होती हैं, अतएव ध्वनि तरंगें अनुदैर्घ्य तरंगें हैं।

यदि आप स्लिंकी के अपने हाथ में पकड़े सिरे को आगे-पीछे धक्का न देकर दाएँ-बाएँ हिलाएँ तब भी आपको स्लिंकी में तरंग उत्पन्न होती दिखाई देगी। इस तरंग में कण तरंग संचरण की दिशा में कंपन नहीं करते लेकिन तरंग के चलने की दिशा के लंबवत् अपनी विराम अवस्था के ऊपर-नीचे कंपन करते हैं। इस प्रकार की तरंग को अनुप्रस्थ तरंग कहते हैं। इस प्रकार अनुप्रस्थ तरंग वह तरंग है जिसमें माध्यम के कण अपनी माध्य स्थितियों पर तरंग के संचरण की दिशा के लंबवत् गति करते हैं। किसी तालाब में पत्थर का टुकड़ा फेंकने पर जल की सतह पर दिखाई देने वाली तरंगें अनुप्रस्थ तरंग का एक उदाहरण है। प्रकाश भी अनुप्रस्थ तरंग है। किंतु प्रकाश में दोलन माध्यम के कणों या उनके दाब या घनत्व के नहीं होते। प्रकाश तरंगें यांत्रिक तरंगें नहीं हैं। आप अनुप्रस्थ तरंगों के बारे में अधिक जानकारी उच्च कक्षाओं में प्राप्त करेंगे।

12.2.3 ध्वनि तरंग के अभिलक्षण

किसी ध्वनि तरंग के निम्नलिखित अभिलक्षण होते हैं ः

• आवृत्ति

• आयाम

• वेग

ध्वनि तरंग को ग्राफीय रूप में चित्र 12.8(c) में दिखाया गया है, जो प्रदर्शित करता है कि जब ध्वनि तरंग किसी माध्यम में गति करती है तो घनत्व तथा दाब में कैसे परिवर्तन होता है। किसी निश्चित समय पर माध्यम का घनत्व तथा दाब दोनों ही उनके औसत मान से ऊपर और नीचे दूरी के साथ परिवर्तित होते हैं। चित्र 12.8(a) तथा 12.8(b) प्रदर्शित करते हैं कि जब ध्वनि तरंग माध्यम में संचरित होती है तो घनत्व तथा दाब में क्या उतार-चढ़ाव होते हैं।

संपीडन वह क्षेत्र है जहाँ कण पास-पास आ जाते हैं, इन्हें वक्र के ऊपरी भाग में दिखाया गया है [चित्र 12.8 (c)] । शिखर अधिकतम संपीडन के क्षेत्र को प्रदर्शित करता है। इस प्रकार संपीडन वह क्षेत्र है जहाँ घनत्व तथा दाब दोनों ही अधिक होते है। विरलन निम्न दाब के क्षेत्र हैं जहाँ कण दूर-दूर हो जाते हैं और उन्हें घाटी से प्रदर्शित करते हैं। इन्हें वक्र के निम्न भाग से दिखाया गया है [चित्र 12.8(c)]। शिखर को तरंग का शृंग तथा घाटी को गर्त कहा जाता है।

दो क्रमागत संपीडनों (C) अथवा दो क्रमागत विरलनों (R) के बीच की दूरी तरंगदैर्घ्य कहलाती है। तरंगदैर्घ्य को साधारणतः λ (ग्रीक अक्षर लैम्डा) से निरूपित किया जाता है। इसका SI मात्रक मीटर (m) है।

2

हैनरिच रुडोल्फ हर्ट्ज़ का जन्म 22 फरवरी 1857 को हैमबर्ग, जर्मनी में हुआ और उनकी शिक्षा बर्लिन विश्वविद्यालय में हुई। उन्होंने जे.सी. मैक्सवेल के विद्युतचुंबकीय सिद्धांत की प्रयोगों द्वारा पुष्टि की। उन्होंने रेडियो, टेलिफ़ोन, टेलिग्राफ तथा टेलिविज़न के भी भविष्य में विकास की नींव रखी। उन्होंने प्रकाश-विद्युत प्रभाव की भी खोज की जिसकी बाद में अल्बर्ट आइन्सटाइन ने व्याख्या की। आवृत्ति के SI मात्रक का नाम उनके सम्मान में रखा गया।


चित्र 12.8: चित्र 12.8 (a) तथा 12.8 (b) में दिखाया गया है कि ध्वनि घनत्व या दाब के उतार-चढ़ाव के रूप में संचरित होती है। चित्र 12.8 (c) में घनत्व तथा दाब के उतार-चढ़ाव को ग्राफीय रूप में प्रदर्शित किया गया है।

आवृत्ति से हमें ज्ञात होता है कि कोई घटना कितनी जल्दी-जल्दी घटित होती है। मान लीजिए आप किसी ढोल को पीट-पीट कर बजा रहे हैं। आप ढोल को एक सेकंड में जितनी बार पीटते हैं वह आपके द्वारा ढोल को पीटने की आवृत्ति है। हम जानते हैं कि जब ध्वनि किसी माध्यम में संचरित होती है तो माध्यम का घनत्व किसी अधिकतम तथा न्यूनतम मान के बीच बदलता है। घनत्व के अधिकतम मान से न्यूनतम मान तक परिवर्तन में और पुनः अधिकतम मान तक आने पर एक दोलन पूरा होता है। एकांक समय में इन दोलनों की कुल संख्या ध्वनि तरंग की आवृत्ति कहलाती है। यदि हम प्रति एकांक समय में अपने पास से गुजरने वाले संपीडनों तथा विरलनों की संख्या की गणना करें तो हमको ध्वनि तरंग की आवृत्ति ज्ञात हो जाएगी। इसे सामान्यतया (ग्रीक अक्षर, न्यू) से प्रदर्शित किया जाता है। इसका SI मात्रक हर्ट्ज़ (hertz, प्रतीक Hz) है।

दो क्रमागत संपीडनों या दो क्रमागत विरलनों को किसी निश्चित बिंदु से गुजरने में लगे समय को तरंग का आवर्त काल कहते हैं। आप कह सकते हैं कि एक संपूर्ण दोलन में लिया गया समय ध्वनि तरंग का आवर्त काल कहलाता है। इसे T अक्षर से निरूपित करते हैं। इसका SI मात्रक सेकंड (s) है। आवृत्ति तथा आवर्त काल के बीच संबंध को निम्न प्रकार व्यक्त किया जा सकता है :

इस प्रकार एक उच्च तारत्व की ध्वनि से हमें ज्ञात होता है कि किसी बिंदु से एकांक समय में संपीडन तथा विरलन की अधिक संख्या गुजरती है।

किसी आरकेस्ट्रा (वाद्यवृंद) में वायलिन तथा बाँसुरी एक ही समय बजाई जा सकती हैं। दोनों ध्वनियाँ एक ही माध्यम (वायु) में चलती हैं और हमारे कानों तक एक ही समय पर पहुँचती हैं। दोनों ही स्रोतों की ध्वनियाँ एक ही चाल से चलती हैं। लेकिन जो ध्वनियाँ हम ग्रहण करते हैं वे भिन्न-भिन्न हैं। एेसा ध्वनि से जुड़े विभिन्न अभिलक्षणों के कारण है। तारत्व इनमें से एक अभिलक्षण है।

किसी उत्सर्जित ध्वनि की आवृत्ति को मस्तिष्क किस प्रकार अनुभव करता है, उसे तारत्व कहते हैं। किसी स्रोत का कंपन जितनी शीघ्रता से होता है, आवृत्ति उतनी ही अधिक होती है और उसका तारत्व भी अधिक होता है। इसी प्रकार जिस ध्वनि का तारत्व कम होता है उसकी आवृत्ति भी कम होती है जैसा कि चित्र 12.9 में दर्शाया गया है।

विभिन्न आकार तथा आकृति की वस्तुएँ विभिन्न आवृत्तियों के साथ कंपन करती हैं और विभिन्न तारत्व की ध्वनियाँ उत्पन्न करती हैं।


चित्र 12.9: निम्न तारत्व की ध्वनि की आवृत्ति कम तथा उच्च तारत्व की ध्वनि की आवृत्ति अधिक होती है

किसी माध्यम में मूल स्थिति के दोनों ओर अधिकतम विक्षोभ को तरंग का आयाम कहते हैं। इसे साधारणतः अक्षर A से निरूपित किया जाता है। जैसा कि चित्र 12.8(c) में दिखाया गया है। ध्वनि के लिए इसका मात्रक दाब या घनत्व का मात्रक होगा। ध्वनि की प्रबलता अथवा मृदुता मूलतः इसके आयाम से ज्ञात की जाती है। यदि हम किसी मेज़ पर धीरे से चोट मारें, तो हमें एक मृदु ध्वनि सुनाई देगी क्योंकि हम कम ऊर्जा की ध्वनि तरंग उत्पन्न करते हैं। यदि हम मेज़ पर जोर से चोट मारें तो हमें प्रबल ध्वनि सुनाई देगी। क्या आप इसका कारण बता सकते हैं? उत्पादक स्रोत से निकलने के पश्चात् ध्वनि तरंग फैल जाती है। स्रोत से दूर जाने पर इसका आयाम तथा प्रबलता दोनों ही कम होते जाते हैं। प्रबल ध्वनि अधिक दूरी तक चल सकती है क्योंकि यह अधिक ऊर्जा से संबद्ध है। चित्र 12.10 में समान आवृत्ति की प्रबल तथा मृदु ध्वनि की तरंग आकृतियाँ प्रदर्शित की गई हैं।


चित्र 12.10: मृदु ध्वनि का आयाम कम होता है तथा प्रबल ध्वनि का आयाम अधिक होता है

ध्वनि की यह गुणता (timbre) वह अभिलक्षण है जो हमें समान तारत्व तथा प्रबलता की दो ध्वनियों में अंतर करने में सहायता करता है। एकल आवृत्ति की ध्वनि को टोन कहते हैं। अनेक आवृत्तियों के मिश्रण से उत्पन्न ध्वनि को स्वर (note) कहते हैं और यह सुनने में सुखद होती है। शोर (noise) कर्णप्रिय नहीं होता जबकि संगीत सुनने मे सुखद होता है ।

प्रश्न

1. तरंग का कौन-सा गुण निम्नलिखित को निर्धारित करता है? (a) प्रबलता, (b) तारत्व।

2. अनुमान लगाइए कि निम्न में से किस ध्वनि का तारत्व अधिक है? (a) गिटार (b) कार का हॉर्न।

तरंग के किसी बिंदु जैसे एक संपीडन या एक विरलन द्वारा एकांक समय में तय की गई दूरी तरंग वेग कहलाती है।


हम जानते हैं

वेग =

=

यहाँ ध्वनि की तरंगदैर्घ्य है। यह तरंग द्वारा एक आवर्त काल (T) में चली गई दूरी है। अतः

v =

अथवा

वेग = तरंगदैर्ध्य आवृत्ति

किसी माध्यम के लिए समान भौतिक परिस्थितियों में ध्वनि का वेग सभी आवृत्तियों के लिए लगभग स्थिर रहता है।

उदाहरण 12.1 किसी ध्वनि तरंग की आवृत्ति 2 kHz और उसकी तरंगदैर्घ्य 35 cm है। यह 1.5 km दूरी चलने में कितना समय लेगी?

हल:

दिया हुआ है,

आवृत्ति, ν = 2 kHz = 2000 Hz

तरंगदैर्घ्य, λ = 35 cm = 0.35 m

हम जानते हैं, तरंग वेग v

= तरंगदैर्घ्य × आवृत्ति

= 0.35 m 2000 Hz = 700 m/s

तरंग को 1.5 km दूरी तय करने में लगने वाला समय

ध्वनि 1.5 km तय करने में 2.1 s समय लेगी।

प्रश्न

1. किसी ध्वनि तरंग की तरंगदैर्घ्य, आवृत्ति, आवर्त काल तथा आयाम से क्या अभिप्राय है?

2. किसी ध्वनि तरंग की तरंगदैर्घ्य तथा आवृत्ति उसके वेग से किस प्रकार संबंधित है?

3. किसी दिए हुए माध्यम में एक ध्वनि तरंग की आवृत्ति 220 Hz तथा वेग 440 m/s है। इस तरंग की तरंगदैर्घ्य की गणना कीजिए।

4. किसी ध्वनिस्रोत से 450 m दूरी पर बैठा हुआ कोई मनुष्य 500 Hz की ध्वनि सुनता है। स्रोत से मनुष्य के पास तक पहुँचने वाले दो क्रमागत संपीडनों में कितना समय अंतराल होगा?

किसी एकांक क्षेत्रफल से एक सेकंड में गुजरने वाली ध्वनि ऊर्जा को ध्वनि की तीव्रता कहते हैं। यद्यपि हम कभी-कभी ‘प्रबलता’ तथा ‘तीव्रता’ शब्दों का पर्याय के रूप में उपयोग करते हैं लेकिन इनका अर्थ एक ही नहीं है। प्रबलता ध्वनि के लिए कानों की संवेदनशीलता की माप है। यद्यपि दो ध्वनियाँ समान तीव्रता की हो सकती हैं फिर भी हम एक को दूसरे की अपेक्षा अधिक प्रबल ध्वनि के रूप में सुन सकते हैं क्योंकि हमारे कान इसके लिए अधिक संवेदनशील हैं।

प्रश्न

1. ध्वनि की प्रबलता तथा तीव्रता में अंतर बताइए।

12.2.4 विभिन्न माध्यमों में ध्वनि की चाल

किसी माध्यम में ध्वनि एक निश्चित चाल से संचरित होती है। किसी पटाखे या तड़ित के गर्जन की ध्वनि प्रकाश की चमक दिखाई देने के कुछ देर बाद सुनाई देती है। इसलिए हम यह निष्कर्ष निकाल सकते हैं कि ध्वनि की चाल प्रकाश की चाल से बहुत कम है। ध्वनि की चाल उस माध्यम के गुणों पर निर्भर करती है जिसमें ये संचरित होती है। आप इस संबंध को अपनी उच्च कक्षाओं में सीखेंगे। किसी माध्यम में ध्वनि की चाल माध्यम के ताप पर निर्भर करती है। जब हम ठोस से गैसीय अवस्था की ओर जाते हैं तो ध्वनि की चाल कम होती जाती है। किसी भी माध्यम में ताप बढ़ाने पर ध्वनि की चाल भी बढ़ती है। उदाहरण के लिए वायु में ध्वनि की चाल 0°C पर 331 m s–1 तथा 22°C पर 344 m s–1 है। सारणी 12.1 में विभिन्न माध्यमों में एक विशेष ताप पर ध्वनि की चाल को दर्शाया गया है। (इसे आपको याद रखने की आवश्यकता नहीं है।)

3

ध्वनि बूम: जब कोई पिंड ध्वनि की चाल से अधिक तेज़ी से गति करता है तब उसे पराध्वनिक चाल से चलता हुआ कहा जाता है। गोलियाँ, जेट-वायुयान आदि प्रायः पराध्वनिक चाल से चलते हैं। जब ध्वनि उत्पादक स्रोत ध्वनि की चाल से अधिक तेज़ी से गति करती है तो ये वायु में प्रघाती तरंगें उत्पन्न करते हैं। इन प्रघाती तरंगों में बहुत अधिक ऊर्जा होती है। इस प्रकार की प्रघाती तरंगों से संबद्ध वायुदाब में परिवर्तन से एक बहुत तेज़ और प्रबल ध्वनि उत्पन्न होती है जिसे ध्वनि बूम कहते हैं। पराध्वनिक वायुयान से उत्पन्न इस ध्वनि बूम में इतनी मात्रा में ऊर्जा होती है कि यह खिड़कियों के शीशों को तोड़ सकती है और यहाँ तक कि भवनों को भी क्षति पहुँचा सकती है।


प्रश्न

1. वायु, जल या लोहे में से किस माध्यम में ध्वनि सबसे तेज़ चलती है?


12.3 ध्वनि का परावर्तन

किसी ठोस या द्रव से टकराकर ध्वनि उसी प्रकार वापस लौटती है जैसे कोई रबड़ की गेंद किसी दीवार से टकराकर वापस आती है। प्रकाश की भाँति ध्वनि भी किसी ठोस या द्रव की सतह से परावर्तित होती है तथा परावर्तन के उन्हीं नियमों का पालन करती है जिनका अध्ययन आप अपनी पिछली कक्षाओं में कर चुके हैं। परावर्तक सतह पर खींचे गए अभिलंब तथा ध्वनि के आपतन होने की दिशा तथा परावर्तन होने की दिशा के बीच बने कोण आपस में बराबर होते हैं और ये तीनों दिशाएँ एक ही तल में होती हैं। ध्वनि तरंगों के परावर्तन के लिए बड़े आकार के अवरोधक की आवश्यकता होती है जो चाहे पालिश किए हुए हों या खुरदरे।

क्रियाकलाप ______________12.5

चित्र 12.11 की भाँति दो एक जैसे पाइप लीजिए। आप चार्ट पेपर की सहायता से एेसे पाइप बना सकते हैं।

पाइपों की लंबाई पर्याप्त होनी चाहिए (चार्ट पेपर की लंबाई के बराबर)।

चित्र 12.11: ध्वनि का परावर्तन

इन्हें दीवार के समीप किसी मेज़ पर व्यवस्थित कीजिए। एक पाइप के खुले सिरे के पास एक घड़ी रखिए तथा दूसरे पाइप की ओर से घड़ी की ध्वनि सुनने की कोशिश कीजिए।

दोनों पाइपों की स्थिति को इस प्रकार समायोजित कीजिए जिससे कि आपको घड़ी की ध्वनि अच्छी प्रकार स्पष्ट रूप से सुनाई देने लगे।

इन पाइपों तथा अभिलंब के बीच के कोणों को मापिए तथा इनके बीच के संबंध को देखिए।

दाईं ओर के पाइप को ऊर्ध्वाधर दिशा में थोड़ी सी ऊँचाई तक उठाइए और देखिए क्या होता है?

(इस क्रियाकलाप में घड़ी के स्थान पर किसी कम्पन्न मोड पर रखे मोबाइल फोन का उपयोग किया जा सकता है।)


12.3.1 प्रतिध्वनि

किसी उचित परावर्तक वस्तु जैसे किसी इमारत अथवा पहाड़ के निकट यदि आप जोर से चिल्लाएँ या ताली बजाएँ तो आपको कुछ समय पश्चात् वही ध्वनि फिर से सुनाई देती है। आपको सुनाई देने वाली इस ध्वनि को प्रतिध्वनि कहते हैं। हमारे मस्तिष्क में ध्वनि की संवेदना लगभग 0.1s तक बनी रहती है। स्पष्ट प्रतिध्वनि सुनने के लिए मूल ध्वनि तथा परावर्तित ध्वनि के बीच कम से कम 0.1s का समय अंतराल अवश्य होना चाहिए। यदि हम किसी दिए हुए ताप, जैसे 22°C पर ध्वनि की चाल 344 m/s मान लें तो ध्वनि को अवरोधक तक जाने तथा परावर्तन के पश्चात् वापस श्रोता तक 0.1s के पश्चात् पहुँचना चाहिए। अतः श्रोता से परावर्तक सतह तक जाने तथा वापस आने में ध्वनि द्वारा तय की गई कुल दूरी कम से कम (344 m/s) × 0.1 s = 34.4 m होनी चाहिए। अतः स्पष्ट प्रतिध्वनि सुनने के लिए अवरोधक की ध्वनि स्रोत से न्यूनतम दूरी ध्वनि द्वारा तय की गई कुल दूरी की आधी अर्थात् 17.2 m अवश्य होनी चाहिए। यह दूरी वायु के ताप के साथ बदल जाती है क्योंकि ताप के साथ ध्वनि के वेग में भी परिवर्तन हो जाता है। ध्वनि के बारंबार परावर्तन के कारण हमें एक से अधिक प्रतिध्वनियाँ भी सुनाई दे सकती हैं। बादलों के गड़गड़ाहट की ध्वनि कई परावर्तक पृष्ठों जैसे बादलों तथा भूमि से बारंबार परावर्तन के फलस्वरूप उत्पन्न होती है।

12.3.2 अनुरणन

किसी बड़े हॉल में उत्पन्न होने वाली ध्वनि दीवारों से बारंबार परावर्तन के कारण काफी समय तक बनी रहती है जब तक कि यह इतनी कम न हो जाए कि यह सुनाई ही न पड़े। यह बारंबार परावर्तन जिसके कारण ध्वनि-निर्बंध होता है, अनुरणन कहलाता है। किसी सभा भवन या बड़े हॉल में अत्यधिक अनुरणन अत्यंत अवांछनीय है। अनुरणन को कम करने के लिए सभा भवन की छतों तथा दीवारों पर ध्वनि अवशोषक पदार्थों जैसे संपीडित फाइबर बोर्ड, खुरदरे प्लास्टर अथवा पर्दे लगे होते हैं। सीटों के पदार्थों का चुनाव इनके ध्वनि अवशोषक गुणों के आधार पर भी किया जाता है।

उदाहरण 12.2 एक मनुष्य किसी खड़ी चट्टान के पास ताली बजाता है और उसकी प्रतिध्वनि 2 s के पश्चात् सुनाई देती है। यदि ध्वनि की चाल 346 m s-1 ली जाए, तो चट्टान तथा मनुष्य के बीच की दूरी कितनी होगी?

हल:

ध्वनि की चाल, v = 346 m s–1

प्रतिध्वनि सुनने में लिया गया समय t = 2 s

ध्वनि द्वारा चली गई दूरी

= v × t = 346 m s–1 × 2 s = 692 m

2 s में ध्वनि ने चट्टान तथा मनुष्य के बीच की दोगनी दूरी तय की। अतएव चट्टान तथा मनुष्य के बीच की दूरी = 692 m/2 = 342 m.

प्रश्न

1. कोई प्रतिध्वनि 3 s पश्चात् सुनाई देती है। यदि ध्वनि की चाल 342 m s-1 हो तो स्रोत तथा परावर्तक सतह के बीच कितनी दूरी होगी?

12.3.3 ध्वनि के बहुल परावर्तन के उपयोग

1. मेगाफ़ोन या लाउडस्पीकर, हॉर्न, तूर्य तथा शहनाई जैसे वाद्य यंत्र, सभी इस प्रकार बनाए जाते हैं कि ध्वनि सभी दिशाओं में फैले बिना केवल एक विशेष दिशा में ही जाती है, जैसा कि चित्र 12.12 में दर्शाया गया है।


चित्र 12.12: मेगाफ़ोन हॉर्न

इन यंत्रों में एक नली का आगे का खुला भाग शंक्वाकार होता है। यह स्रोत से उत्पन्न होने वाली ध्वनि तरंगों को बार-बार परावर्तित करके श्रोताओं की ओर आगे की दिशा में भेज देता है।

2. स्टेथोस्कोप एक चिकित्सा यंत्र है जो शरीर के अंदर, मुख्यतः हृदय तथा फेफड़ों में, उत्पन्न होने वाली ध्वनि को सुनने में काम आता है। स्टेथोस्कोप में रोगी के हृदय की धड़कन की ध्वनि, बार-बार परावर्तन के कारण डॉक्टर के कानों तक पहुँचती है (चित्र 12.13)।



चित्र 12.13: स्टेथोस्को

3. कंसर्ट हॉल, सम्मेलन कक्षों तथा सिनेमा हॉल की छतें वक्राकार बनाई जाती हैं जिससे कि परावर्तन के पश्चात् ध्वनि हॉल के सभी भागों में पहुँच जाए, जैसा कि चित्र 12.14 में दर्शाया गया है। कभी-कभी वक्राकार ध्वनि-पट्टों को मंच के पीछे रख दिया जाता है जिससे कि ध्वनि, ध्वनि-पट ्ट से परावर्तन के पश्चात् समान रूप से पूरे हॉल में फैल जाए (चित्र 12.15)।


चित्र 12.14: सम्मेलन कक्ष की वक्राकार छत


चित्र 12.15: बड़े कहॉल में उपयोग किए जाने वाला ध्वनि-पट ्ट


प्रश्न

1. कंसर्ट हॉल की छतें वक्राकार क्यों होती हैं?

12.4 श्रव्यता का परिसर

हम सभी आवृत्ति की ध्वनियों को नहीं सुन सकते। मनुष्यों में ध्वनि की श्रव्यता का परिसर लगभग 20 Hz से 20,000 Hz (one Hz = one cycle/s) तक होता है। पाँच वर्ष से कम आयु के बच्चे तथा कुछ जंतु जैसे कुत्ते 25 kHz तक की ध्वनि सुन सकते हैं। ज्यों-ज्यों व्यक्तियों की आयु बढ़ती जाती है उनके कान उच्च-आवृत्तियों के लिए कम सुग्राही होते जाते हैं। 20 Hz से कम आवृत्ति की ध्वनियों को अवश्रव्य ध्वनि कहते हैं। यदि हम अवश्रव्य ध्वनि को सुन पाते तो हम किसी लोलक के कंपनों को उसी प्रकार सुन पाते जैसे कि हम किसी मक्खी पंखों के कंपनों को सुन पाते हैं। राइनोसिरस (गैंडा) 5 Hz तक की आवृत्ति की अवश्रव्य ध्वनि का उपयोग करके संपर्क स्थापित करता है। ह्वेेल तथा हाथी अवश्रव्य ध्वनि परिसर की ध्वनियाँ उत्पन्न करते हैं। यह देखा गया है कि कुछ जंतु भूकंप से पहले परेशान हो जाते हैं। भूकंप मुख्य प्रघाती तरंगाें से पहले निम्न आवृत्ति की अवश्रव्य ध्वनि उत्पन्न करते हैं, जो संभवतः जंतुओं को सावधान कर देती है। 20 kHz से अधिक आवृत्ति की ध्वनियों को पराश्रव्य ध्वनि या पराध्वनि कहते हैं। डॉलफ़िन, चमगादड़ और पॉरपॉइज जैसे जंतु पराध्वनि उत्पन्न करते हैं। कुछ प्रजाति के शलभों (moths) के श्रवण यंत्र अत्यंत सुग्राही होते हैं। ये शलभ चमगादड़ों द्वारा उत्पन्न उच्च आवृत्ति की चींचीं की ध्वनि को सुन सकते हैं। उन्हें अपने आस-पास उड़ते हुए चमगादड़ के बारे में जानकारी मिल जाती है और इस प्रकार स्वयं को पकड़े जाने से बचा पाते हैं। चूहे भी पराध्वनि उत्पन्न करके कुछ खेल खेलते हैं।

श्रवण सहायक युक्तिः जिन लोगों को कम सुनाई देता है, उन्हें इस यंत्र की आवश्यकता होती है। यह बैट्री से चलने वाली एक इलेक्ट्रॉनिक युक्ति है। इसमें एक छोटा-सा माइक्रोफ़ोन, एक एंप्लीफायर व स्पीकर होता है। जब ध्वनि माइक्रोफ़ोन पर पड़ती है तो वह ध्वनि तरंगों को विद्युत संकेतों में परिवर्तित कर देता है। एंप्लीफायर इन विद्युत संकेतों को प्रवर्धित कर देता है। ये संकेत स्पीकर द्वारा ध्वनि की तरंगों में परिवर्तित कर दिए जाते हैं। ये ध्वनि तरंगें कान के डायफ्राम पर आपतित होती हैं तथा व्यक्ति को ध्वनि साफ़ सुनाई देती है।

प्रश्न

1. सामान्य मनुष्य के कानों के लिए श्रव्यता परास क्या है?

2. निम्न से संबंधित आवृत्तियों का परास क्या है?

(a) अवश्रव्य ध्वनि

(b) पराध्वनि

12.5 पराध्वनि के अनुप्रयोग

पराध्वनियाँ उच्च आवृत्ति की तरंगें हैं। पराध्वनियाँ अवरोधों की उपस्थिति में भी एक निश्चित पथ पर गमन कर सकती हैं। उद्योगों तथा चिकित्सा के क्षेत्र में पराध्वनियों का विस्तृत रूप से उपयोग किया
जाता है।

पराध्वनि प्रायः उन भागों को साफ़ करने में उपयोग की जाती है जिन तक पहुँचना कठिन होता है; जैसे–सर्पिलाकार नली, विषम आकार के पुर्जे, इलेक्ट्रॉनिक अवयव आदि। जिन वस्तुओं को साफ़ करना होता है उन्हें साफ़ करने वाले मार्जन विलयन में रखते हैं और इस विलयन में पराध्वनि तरंगें भेजी जाती हैं। उच्च आवृत्ति के कारण, धूल, चिकनाई तथा गंदगी के कण अलग होकर नीचे गिर जाते हैं। इस प्रकार वस्तु पूर्णतया साफ़ हो जाती है।

पराध्वनि का उपयोग धातु के ब्लॉकों (पिंडों) में दरारों तथा अन्य दोषों का पता लगाने के लिए किया जा सकता है। धात्विक घटकों को प्रायः बड़े-बड़े भवनों, पुलों, मशीनों तथा वैज्ञानिक उपकरणों को बनाने के लिए उपयोग में लाया जाता है। धातु के ब्लॉकों में विद्यमान दरार या छिद्र जो बाहर से दिखाई नहीं देते, भवन या पुल की संरचना की मज़बूती को कम कर देते हैं। पराध्वनि तरंगें धातु के ब्लॉक से गुज़ारी (प्रेषित की) जाती हैं और प्रेषित तरंगों का पता लगाने के लिए संसूचकों का उपयोग किया जाता है। यदि थोड़ा-सा भी दोष होता है, तो पराध्वनि तरंगें परावर्तित हो जाती हैं जो दोष की उपस्थिति को दर्शाती है (चित्र 12.16)।


चित्र 12.16: पराध्वनि धातु के ब्लॉक में दोषयुक्त स्थान से परावर्तित हो जाती है


साधारण ध्वनि जिसकी तरंगदैर्घ्य अधिक होती है, दोषयुक्त स्थान के कोणों से मुड़कर संसूचक तक पहुँच जाती है, इसलिए इस ध्वनि का उपयोग इस कार्य के लिए नहीं किया जा सकता।

पराध्वनि तरंगों को हृदय के विभिन्न भागों से परावर्तित करा कर हृदय का प्रतिबिंब बनाया जाता है। इस तकनीक को "इकोकार्डियोग्राफ़ी" (ECG)कहा जाता है।

पराध्वनि संसूचक एक एेसा यंत्र है जो पराध्वनि तरंगों का उपयोग करके मानव शरीर के आंतरिक अंगों का प्रतिबिंब प्राप्त करने के लिए काम में लाया जाता है। इस संसूचक से रोगी के अंगों; जैसे–यकृत, पित्ताशय, गर्भाशय, गुर्दे आदि का प्रतिबिंब प्राप्त किया जा सकता है। यह संसूचक को शरीर की असमान्यताएँ, जैसे पित्ताशय तथा गुर्दे में पथरी तथा विभिन्न अंगों में अर्बुद (ट्यूमर) का पता लगाने में सहायता करता है। इस तकनीक में पराध्वनि तरंगें शरीर के ऊतकों में गमन करती हैं तथा उस स्थान से परावर्तित हो जाती हैं जहाँ ऊतक के घनत्व में परिवर्तन होता है। इसके पश्चात् इन तरंगों को विद्युत संकेतों में परिवर्तित किया जाता है जिससे कि उस अंग का प्रतिबिंब बना लिया जाए। इन प्रतिबिंबों को मॉनीटर पर प्रदर्शित किया जाता है या फिल्म पर मुद्रित कर लिया जाता है। इस तकनीक को अल्ट्रासोनोग्राफ़ी कहते हैं। अल्ट्रासोनोग्राफ़ी का उपयोग गर्भ काल में भ्रूण की जाँच तथा उसके जन्मजात दोषों तथा उसकी वृद्धि की अनियमितताओं का पता लगाने में किया
जाता है।

पराध्वनि का उपयोग गुर्दे की छोटी पथरी को बारीक कणों में तोड़ने के लिए भी किया जा सकता है। ये कण बाद में मूत्र के साथ बाहर निकल जाते हैं।

12.5.1 सोनार

सोनार (SONAR) शब्द SOund Navigation And Ranging से बना है। सोनार एक एेसी युक्ति है जिसमें जल में स्थित पिंडों की दूरी, दिशा तथा चाल मापने के लिए पराध्वनि तरंगों का उपयोग किया जाता है। सोनार कैसे कार्य करता है? सोनार में एक प्रेषित्र तथा एक संसूचक होता है और इसे किसी नाव या जहाज में चित्र 12.17 की भाँति लगाया जाता है।


चित्र 12.17: प्रेषित्र द्वारा प्रेषित की गई तथा संसूचक द्वारा ग्रहण की गई पराध्वन

प्रेषित्र पराध्वनि तरंगें उत्पन्न तथा प्रेषित करता है। ये तरंगें जल में चलती हैं तथा समुद्र तल में पिंड से टकराने के पश्चात् परावर्तित होकर संसूचक द्वारा ग्रहण कर ली जाती हैं। संसूचक पराध्वनि तरंगों को विद्युत संकेतों में बदल देता है जिनकी उचित रूप से व्याख्या कर ली जाती है। जल में ध्वनि की चाल तथा पराध्वनि के प्रेषण तथा अभिग्रहण के समय अंतराल को ज्ञात करके उस पिंड की दूरी की गणना की जा सकती है जिससे ध्वनि तरंग परावर्तित हुई है। मान लीजिए पराध्वनि संकेत के प्रेषण तथा अभिग्रहण का समय अंतराल ‘t’ है तथा समुद्री जल में ध्वनि की चाल ‘v’ है। तब सतह से पिंड की दूरी 2 ‘d’ होगी
2d = v × t

उपरोक्त विधि को प्रतिध्वनिक-परास कहते हैं। सोनार की तकनीक का उपयोग समुद्र की गहराई ज्ञात करने तथा जल के अंदर स्थित चट्टानों, घाटियों, पनडुब्बियों, हिम शैल (प्लावी बर्फ़), डूबे हुए जहाज आदि की जानकारी प्राप्त करने के लिए किया
जाता है।

उदाहरण 12.3 एक जहाज पराध्वनि उत्सर्जित करता है जो समुद्र तल से परावर्तित होकर 3.42 s के पश्चात् संसूचित की जाती है। यदि समुद्र जल में पराध्वनि की चाल 1531 m/s हो, तो समुद्र तल से जहाज की कितनी दूरी होगी?

हल:

प्रेषण तथा संसूचन के बीच लगा समय

t = 3.42 s.

समुद्र जल में पराध्वनि की चाल

v = 1531 m/s

पराध्वनि द्वारा चली गई दूरी = 2d

जहाँ d = समुद्र की गहराई

2d = ध्वनि की चाल × समय

= 1531 m/s × 3.42 s = 5236 m

d = 5236 m /2 = 2618 m

अतः जहाज से समुद्र तल की दूरी 2618 m या 2.62 km है।

प्रश्न

1. एक पनडुब्बी सोनार स्पंद उत्सर्जित करती है, जो पानी के अंदर एक खड़ी चट्टान से टकराकर 1.02 s के पश्चात् वापस लौटता है। यदि खारे पानी में ध्वनि की चाल 1531 m/s हो, तो चट्टान की दूरी ज्ञात कीजिए।

जैसा कि पहले वर्णन किया गया है, चमगादड़ गहन अंधकार में अपने भोजन को खोजने के लिए उड़ते समय पराध्वनि तरंगें उत्सर्जित करता है तथा परावर्तन के पश्चात् इनका संसूचन करता है। चमगादड़ द्वारा उत्पन्न उच्च तारत्व के पराध्वनि स्पंद अवरोधों या कीटों से परावर्तित होकर चमगादड़ के कानों तक पहुँचते हैं (चित्र 12.18)। इन परावर्तित स्पंदों की प्रकृति से चमगादड़ को पता चलता है कि अवरोध या कीट कहाँ पर है और यह किस प्रकार का है। पॉरपॉइज मछलियाँ भी अंधेरे में संचालन व भोजन की खोज़ में पराध्वनि का उपयोग करती हैं।


चित्र 12.18: चमगादड़ द्वारा पराध्वनि उत्सर्जित होती है तथा अवरोध या कीटों द्वारा परावर्तित होती है

12.6 मानव कर्ण की संरचना

हम कैसे सुनते हैं? हम एक अतिसंवेदी युक्ति जिसे कान (कर्ण) कहते हैं, की सहायता से सुन पाते हैं। यह श्रवणीय आवृत्तियों द्वारा वायु में होने वाले दाब परिवर्तनों को विद्युत संकेतों में बदलता है जो श्रवण तंत्रिका से होते हुए मस्तिष्क तक पहुँचते हैं। मानव के कान द्वारा सुनने की प्रक्रिया के पक्ष के बारे में हम यहाँ चर्चा करेंगे।



चित्र 12.19: मानव कान के श्रवण भाग

बाहरी कान ‘कर्ण पल्लव’ कहलाता है। यह परिवेश से ध्वनि को एकत्रित करता है। एकत्रित ध्वनि श्रवण नलिका से गुजरती है। श्रवण नलिका के सिरे पर एक पतली झिल्ली होती है जिसे कर्ण पटह या कर्ण पटह झिल्ली कहते हैं। जब माध्यम के संपीडन कर्ण पटह तक पहुँचते हैं तो झिल्ली के बाहर की ओर लगने वाला दाब बढ़ जाता है और यह कर्ण पटह को अंदर की ओर दबाता है। इसी प्रकार, विरलन के पहुँचने पर कर्ण पटह बाहर की ओर गति करता है। इस प्रकार कर्ण पटह कंपन करता है। मध्य कर्ण में विद्यमान तीन हड्डियाँ [(मुग्दरक, निहाई तथा वलयक (स्टिरप)] इन कंपनों को कई गुना बढ़ा देती हैं। मध्य कर्ण ध्वनि तरंगों से मिलने वाले इन दाब परिवर्तनों को आंतरिक कर्ण तक संचरित कर देता है। आंतरिक कर्ण में कर्णावर्त (Cochlea) द्वारा दाब परिवर्तनों को विद्युत संकेतों में परिवर्तित कर दिया जाता है। इन विद्युत संकेतों को श्रवण तंत्रिका द्वारा मस्तिष्क तक भेज दिया जाता है और मस्तिष्क इनकी ध्वनि के रूप में व्याख्या करता है।


आपने क्या सीखा

ध्वनि विभिन्न वस्तुओं के कंपन करने के कारण उत्पन्न होती है।

ध्वनि किसी द्रव्यात्मक माध्यम में अनुदैर्घ्य तरंगों के रूप में संचरित होती है।

ध्वनि माध्यम में क्रमागत संपीडनों तथा विरलनों के रूप में संचरित होती है।

ध्वनि संचरण में, माध्यम के कण आगे नहीं बढ़ते, केवल विक्षोभ ही संचरित होता है।

ध्वनि निर्वात में संचरित नहीं हो सकती।

घनत्व के अधिकतम मान से न्यूनतम मान और पुनः अधिकतम मान के परिवर्तन से एक दोलन पूरा होता है।

वह न्यूनतम दूरी जिस पर किसी माध्यम का घनत्व या दाब आवर्ती रूप में अपने मान की पुनरावृत्ति करता है, ध्वनि की तरंगदैर्घ्य (λ) कहलाती है।

तरंग द्वारा माध्यम के घनत्व के एक संपूर्ण दोलन में लिए गए समय को आवर्त काल (T) कहते हैं।

एकांक समय में होने वाले दोलनों की कुल संख्या को आवृत्ति (ν) कहते 

हैं .

ध्वनि का वेग (v), आवृत्ति (ν) तथा तरंगदैर्घ्य (λ) में संबंध है, v = λν

ध्वनि की चाल मुख्यतः संचरित होने वाले माध्यम की प्रकृति तथा ताप पर निर्भर होती है।

ध्वनि के परावर्तन के नियम के अनुसार, ध्वनि के आपतन होने की दिशा तथा परावर्तन होने की दिशा, परावर्तक सतह पर खींचे गए अभिलंब से समान कोण बनाते हैं और ये तीनों एक ही तल में होते हैं।

स्पष्ट प्रतिध्वनि सुनने के लिए मूल ध्वनि तथा परावर्तित ध्वनि के बीच कम से कम 0.1 s का समय अंतराल अवश्य होना चाहिए।

किसी सभागार में ध्वनि-निर्बंध बारंबार परावर्तनों के कारण होता है और इसे अनुरणन कहते हैं।

ध्वनि के अभिलक्षण जैसे तारत्व, प्रबलता तथा गुणता; संगत तरंगों के गुणों द्वारा निर्धारित होते हैं।

प्रबलता ध्वनि की तीव्रता के लिए कानों की शारीरिक अनुक्रिया है।

किसी एकांक क्षेत्रफल से एक सेकंड में गुजरने वाली ध्वनि ऊर्जा को ध्वनि की तीव्रता कहते हैं।

मानवों में ध्वनि की श्रव्यता की आवृत्तियों का औसत परास 20 Hz से 20 kHz तक है।

श्रव्यता के परास से कम आवृत्तियों की ध्वनि को ‘अवश्रव्य’ ध्वनि तथा श्रव्यता के परास से अधिक आवृत्ति की ध्वनियों को ‘पराध्वनि’ कहते हैं।

पराध्वनि के चिकित्सा तथा प्रौद्योगिक क्षेत्रों में अनेक उपयोग हैं।

सोनार की तकनीक का उपयोग समुद्र की गहराई ज्ञात करने तथा जल के नीचे छिपी चट्टानों, घाटियों, पनडुब्बियों, हिम शैल, डूबे हुए जहाजों, आदि का पता लगाने के लिए किया जाता है।



अभ्यास

1. ध्वनि क्या है और यह कैसे उत्पन्न होती है?

2. एक चित्र की सहायता से वर्णन कीजिए कि ध्वनि के स्रोत के निकट वायु में संपीडन तथा विरलन कैसे उत्पन्न होते हैं।

3. किस प्रयोग से यह दर्शाया जा सकता है कि ध्वनि संचरण के लिए एक द्रव्यात्मक माध्यम की आवश्यकता होती है।

4. ध्वनि तरंगों की प्रकृति अनुदैर्घ्य क्यों है?

5. ध्वनि का कौन-सा अभिलक्षण किसी अन्य अंधेरे कमरे में बैठे आपके मित्र की आवाज पहचानने में आपकी सहायता करता है?

6. तड़ित की चमक तथा गर्जन साथ-साथ उत्पन्न होते हैं। लेकिन चमक दिखाई देने के कुछ सेकंड पश्चात् गर्जन सुनाई देती है। एेसा क्यों होता है?

7. किसी व्यक्ति का औसत श्रव्य परास 20 Hz से 20 kHz है। इन दो आवृत्तियों के लिए ध्वनि तरंगों की तरंगदैर्घ्य ज्ञात कीजिए। वायु में ध्वनि का वेग 344 m s–1 लीजिए।

8. दो बालक किसी एेलुमिनियम पाइप के दो सिरों पर हैं। एक बालक पाइप के एक सिरे पर पत्थर से आघात करता है। दूसरे सिरे पर स्थित बालक तक वायु तथा एेलुमिनियम से होकर जाने वाली ध्वनि तरंगों द्वारा लिए गए समय का अनुपात ज्ञात कीजिए।

9. किसी ध्वनि स्रोत की आवृत्ति 100 Hz है। एक मिनट में यह कितनी बार कंपन करेगा?

10. क्या ध्वनि परावर्तन के उन्हीं नियमों का पालन करती है जिनका कि प्रकाश की तंरगें करती हैं? इन नियमों को बताइए।

11. ध्वनि का एक स्रोत किसी परावर्तक सतह के सामने रखने पर उसके द्वारा प्रदत्त ध्वनि तरंग की प्रतिध्वनि सुनाई देती है। यदि स्रोत तथा परावर्तक सतह की दूरी स्थिर रहे तो किस दिन प्रतिध्वनि अधिक शीघ्र सुनाई देगी - (i) जिस दिन तापमान अधिक हो? (ii) जिस दिन तापमान कम हो?

12. ध्वनि तरंगों के परावर्तन के दो व्यावहारिक उपयोग लिखिए।

13. 500 मीटर ऊँची किसी मीनार की चोटी से एक पत्थर मीनार के आधार पर स्थित एक पानी के तालाब में गिराया जाता है। पानी में इसके गिरने की ध्वनि चोटी पर कब सुनाई देगी? (g = 10 m s-2 तथा ध्वनि की चाल
= 340 m s-1)

14. एक ध्वनि तरंग 339 m s-1 की चाल से चलती है। यदि इसकी तरंगदैर्घ्य 1.5 cm हो, तो तरंग की आवृत्ति कितनी होगी? क्या ये श्रव्य होंगी?

15. अनुरणन क्या है? इसे कैसे कम किया जा सकता है?

16. ध्वनि की प्रबलता से क्या अभिप्राय है? यह किन कारकों पर निर्भर करती है?

17. चमगादड़ अपना शिकार पकड़ने के लिए पराध्वनि का उपयोग किस प्रकार करता है? वर्णन कीजिए।

18. वस्तुओं को साफ़ करने के लिए पराध्वनि का उपयोग कैसे करते हैं?

19. सोनार की कार्यविधि तथा उपयोगों का वर्णन कीजिए।

20. एक पनडुब्बी पर लगी एक सोनार युक्ति, संकेत भेजती है और उनकी प्रतिध्वनि 5 s पश्चात् ग्रहण करती है। यदि पनडुब्बी से वस्तु की दूरी 3625 m हो तो ध्वनि की चाल की गणना कीजिए।

21. किसी धातु के ब्लॉक में दोषों का पता लगाने के लिए पराध्वनि का उपयोग कैसे किया जाता है वर्णन कीजिए।

22. मनुष्य का कान किस प्रकार कार्य करता है? विवेचना कीजिए।



RELOAD if chapter isn't visible.