240 BIOLOGY Epicotyl hook Seed coat Epicotyl Soil line Cotyledon Cotyledons Hypocotyl Hypocotyl Figure 15.1 Germination and seedling development in bean 15.1 GROWTH Growth is regarded as one of the most fundamental and conspicuous characteristics of a living being. What is growth? Growth can be defined as an irreversible permanent increase in size of an organ or its parts or even of an individual cell. Generally, growth is accompanied by metabolic processes (both anabolic and catabolic), that occur at the expense of energy. Therefore, for example, expansion of a leaf is growth. How would you describe the swelling of piece of wood when placed in water? 15.1.1 Plant Growth Generally is Indeterminate Plant growth is unique because plants retain the capacity for unlimited growth throughout their life. This ability of the plants is due to the presence of meristems at certain locations in their body. The cells of such meristems have the capacity to divide and self-perpetuate. The product, however, soon loses the capacity to divide and such cells make up the plant body. This form of growth wherein new cells are always being added to the plant body by the activity of the meristem is called the open form of growth. What would happen if the meristem ceases to divide? Does this ever happen? In Chapter 6, you have studied about the root apical meristem and the shoot apical meristem. You know that they are responsible for the PLANT GROWTH AND DEVELOPMENT primary growth of the plants and principally contribute to the elongation of the plants along their axis. You also know that in dicotyledonous plants and gymnosperms, the lateral meristems, vascular cambium and cork-cambium appear later in life. These are the meristems that cause the increase in the girth of the organs in which they are active. This is known as secondary growth of the plant (see Figure 15.2). 15.1.2 Growth is Measurable Growth, at a cellular level, is principally a consequence of increase in the amount of protoplasm. Since increase in protoplasm is difficult to measure directly, one generally measures some quantity which is more or less proportional to it. Growth is, therefore, measured by a variety of parameters some of which are: increase in fresh weight, dry weight, length, area, volume and cell number. You may find it amazing to know that one single maize root apical mersitem can give rise to more than 17,500 new cells per hour, whereas cells in a watermelon may increase in size by upto 3,50,000 times. In the former, growth is expressed as increase in cell number; the latter expresses growth as increase in size of the cell. While the growth of a pollen tube is measured in terms of its length, an increase in surface area denotes the growth in a dorsiventral leaf. 15.1.3 Phases of Growth The period of growth is generally divided into three phases, namely, meristematic, elongation and maturation (Figure 15.3). Let us understand this by looking at the root tips. The constantly dividing cells, both at the root apex and the shoot apex, represent the meristematic phase of growth. The cells in this region are rich in protoplasm, possess large conspicuous nuclei. Their cell walls are primary in nature, thin and cellulosic with abundant plasmodesmatal connections. The cells proximal (just next, away from the tip) to the Shoot apical meristem Shoot Vascular cambium Vascular Root cambium Root apical meristem Figure 15.2 Diagrammatic representation of locations of root apical meristem, shoot aplical meristem and vascular cambium. Arrows exhibit the direction of growth of cells and organ G F E D C B A Figure 15.3 Detection of zones of elongation by the parallel line technique. Zones A, B, C, D immediately behind the apex have elongated most. 244 BIOLOGY Figure15.7 Diagrammatic comparison of absolute and relative growth rates. Both leaves A and B have increased their area by 5 cm2 in a given time to produce A1, B1 leaves. Quantitative comparisons between the growth of living system can also be made in two ways : (i) measurement and the comparison of total growth per unit time is called the absolute growth rate. (ii) The growth of the given system per unit time expressed on a common basis, e.g., per unit initial parameter is called the relative growth rate. In Figure 15.7 two leaves, A and B, are drawn that are of different sizes but shows absolute increase in area in the given time to give leaves, A1 and B1. However, one of them shows much higher relative growth rate. Which one and why? 15.1.5 Conditions for Growth Why do you not try to write down what you think are necessary conditions for growth? This list may have water, oxygen and nutrients as very essential elements for growth. The plant cells grow in size by cell enlargement which in turn requires water. Turgidity of cells helps in extension growth. Thus, plant growth and further development is intimately linked to the water status of the plant. Water also provides the medium for enzymatic activities needed for growth. Oxygen helps in releasing metabolic energy essential for growth activities. Nutrients (macro and micro essential elements) are required by plants for the synthesis of protoplasm and act as source of energy. In addition, every plant organism has an optimum temperature range best suited for its growth. Any deviation from this range could be detrimental to its survival. Environmental signals such as light and gravity also affect certain phases/stages of growth. PLANT GROWTH AND DEVELOPMENT Thus, growth, differentiation and development are very closely related events in the life of a plant. Broadly, development is considered as the sum of growth and differentiation. Development in plants (i.e., both growth and differentiation) is under the control of intrinsic and extrinsic factors. The former includes both intracellular (genetic) or intercellular factors (chemicals such as plant growth regulators) while the latter includes light, temperature, water, oxygen, nutrition, etc. 15.4 PLANT GROWTH REGULATORS 15.4.1 Characteristics The plant growth regulators (PGRs) are small, simple molecules of diverse chemical composition. They could be indole compounds (indole-3-acetic acid, IAA); adenine derivatives (N6-furfurylamino purine, kinetin), derivatives of carotenoids (abscisic acid, ABA); terpenes (gibberellic acid, GA3) or gases (ethylene, C2H4). Plant growth regulators are variously described as plant growth substances, plant hormones or phytohormones in literature. The PGRs can be broadly divided into two groups based on their functions in a living plant body. One group of PGRs are involved in growth promoting activities, such as cell division, cell enlargement, pattern formation, tropic growth, flowering, fruiting and seed formation. These are also called plant growth promoters, e.g., auxins, gibberellins and cytokinins. The PGRs of the other group play an important role in plant responses to wounds and stresses of biotic and abiotic origin. They are also involved in various growth inhibiting activities such as dormancy and abscission. The PGR abscisic acid belongs to this group. The gaseous PGR, ethylene, could fit either of the groups, but it is largely an inhibitor of growth activities. 15.4.2 The Discovery of Plant Growth Regulators Interestingly, the discovery of each of the five major groups of PGRs have been accidental. All this started with the observation of Charles Darwin and his son Francis Darwin when they observed that the coleoptiles of canary grass responded to unilateral illumination by growing towards the light source (phototropism). After a series of experiments, it was concluded that the tip of coleoptile was the site of transmittable a bcd influence that caused the bending of the entire Figure 15.10 Experiment used to demonstrate coleoptile (Figure 15.10). Auxin was isolated by that tip of the coleoptile is the F.W. Went from tips of coleoptiles of oat source of auxin. Arrows indicate direction of lightseedlings. PLANT GROWTHAND DEVELOPMENT Auxins also induce parthenocarpy, e.g., in tomatoes. They are widely used as herbicides. 2, 4-D, widely used to kill dicotyledonous weeds, does not affect mature monocotyledonous plants. It is used to prepare weed-free lawns by gardeners. Auxin also controls xylem differentiation and helps in cell division. 15.4.3.2 Gibberellins Gibberellinsareanother kind of promotery PGR. There are more than 100 gibberellins reported from widely different organisms such (a) (b) as fungi and higher plants. They are denoted Figure 15.11 Apical dominance in plants : as GA , GA, GA and so on. However,123(a) A plant with apical bud intact Gibberellic acid (GA) was one of the first (b) A plant with apical bud removed3gibberellins to be discovered and remains the Note the growth of lateral buds into branches after decapitation.most intensively studied form. All GAs are acidic. They produce a wide range of physiological responses in the plants. Their ability to cause an increase in length of axis is used to increase the length of grapes stalks. Gibberellins, cause fruits like apple to elongate and improve its shape. They also delay senescence. Thus, the fruits can be left on the tree longer so as to extend the market period. GA is used to speed up the malting process in brewing3industry. Sugarcane stores carbohydrate as sugar in their stems. Spraying sugarcane crop with gibberellins increases the length of the stem, thus increasing the yield by as much as 20 tonnes per acre. Spraying juvenile conifers with GAs hastens the maturity period, thus leading to early seed production. Gibberellins also promotes bolting (internode elongation just prior to flowering) in beet, cabbages and many plants with rosette habit. 15.4.3.3 Cytokinins Cytokinins have specific effects on cytokinesis, and were discovered as kinetin (a modified form of adenine, a purine) from the autoclaved herring sperm DNA. Kinetin does not occur naturally in plants. Search for natural substances with cytokinin-like activities led to the isolation of zeatin from corn-kernels and coconut milk. Since the discovery of zeatin, several naturally occurring cytokinins, and some synthetic compounds with cell division promoting activity, have been identified. Natural cytokinins are synthesised in regions where rapid cell division occurs, for example, root apices, developing shoot buds, young fruits etc. It helps to produce new BIOLOGY leaves, chloroplasts in leaves, lateral shoot growth and adventitious shoot formation. Cytokinins help overcome the apical dominance. They promote nutrient mobilisation which helps in the delay of leaf senescence. 15.4.3.4 Ethylene Ethylene is a simple gaseous PGR. It is synthesised in large amounts by tissues undergoing senescence and ripening fruits. Influences of ethylene on plants include horizontal growth of seedlings, swelling of the axis and apical hook formation in dicot seedlings. Ethylene promotes senescence and abscission of plant organs especially of leaves and flowers. Ethylene is highly effective in fruit ripening. It enhances the respiration rate during ripening of the fruits. This rise in rate of respiration is called respiratory climactic. Ethylene breaks seed and bud dormancy, initiates germination in peanut seeds, sprouting of potato tubers. Ethylene promotes rapid internode/petiole elongation in deep water rice plants. It helps leaves/ upper parts of the shoot to remain above water. Ethylene also promotes root growth and root hair formation, thus helping the plants to increase their absorption surface. Ethylene is used to initiate flowering and for synchronising fruit-set in pineapples. It also induces flowering in mango. Since ethylene regulates so many physiological processes, it is one of the most widely used PGR in agriculture. The most widely used compound as source of ethylene is ethephon. Ethephon in an aqueous solution is readily absorbed and transported within the plant and releases ethylene slowly. Ethephon hastens fruit ripening in tomatoes and apples and accelerates abscission in flowers and fruits (thinning of cotton, cherry, walnut). It promotes female flowers in cucumbers thereby increasing the yield. 15.4.3.5 Abscisic acid As mentioned earlier, abscisic acid (ABA) was discovered for its role in regulating abscission and dormancy. But like other PGRs, it also has other wide ranging effects on plant growth and development. It acts as a general plant growth inhibitor and an inhibitor of plant metabolism. ABA inhibits seed germination. ABA stimulates the closure of stomata in the epidermis and increases the tolerance of plants to various kinds of stresses. Therefore, it is also called the stress hormone. ABA plays an important role in seed development, maturation and dormancy. By inducing dormancy, ABA helps seeds to withstand desiccation and other factors unfavourable for growth. In most situations, ABA acts as an antagonist to GAs. We may summarise that for any and every phase of growth, differentiation and development of plants, one or the other PGR has some role to play. Such roles could be complimentary or antagonistic. These could be individualistic or synergistic. PLANT GROWTH AND DEVELOPMENT Similarly, there are a number of events in the life of a plant where more than one PGR interact to affect that event, e.g., dormancy in seeds/ buds, abscission, senescence, apical dominance, etc. Remember, the role of PGR is of only one kind of intrinsic control. Along with genomic control and extrinsic factors, they play an important role in plant growth and development. Many of the extrinsic factors such as temperature and light, control plant growth and development via PGR. Some of such events could be: vernalisation, flowering, dormancy, seed germination, plant movements, etc. We shall discuss briefly the role of light and temperature (both of them, the extrinsic factors) on initiation of flowering. 15.5 PHOTOPERIODISM It has been observed that some plants require a periodic exposure to light to induce flowering. It is also seen that such plants are able to measure the duration of exposure to light. For example, some plants require the exposure to light for a period exceeding a well defined critical duration, while others must be exposed to light for a period less than this critical duration before the flowering is initiated in them. The former group of plants are called long day plants while the latter ones are termed short day plants. The critical duration is different for different plants. There are many plants, however, where there is no such correlation between exposure to light duration and induction of flowering response; such plants are called day-neutral plants (Figure 15.12). It is now also Day neutral plant Figure 15.12 Photoperiodism : Long day, short day and day neutral plants Long day plant Short day plant

RELOAD if chapter isn't visible.